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Dimensionality Reduction

Let P be a set of n points in d-dimensional space, where d is a very large

value (possibly even larger than n). Informally, the goal of dimensionality

reduction is to convert P into a set P ′ of points in a k-dimensional space

where k < d , such that P ′ loses as little information about P as possible.

Dimensionality Reduction with PCA



3/23

Example. We can convert 2d points into 1d ones by projecting them onto
a line `.

`
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Why Dimensionality Reduction?

Better mining efficiency and/or effectiveness.

Most data mining algorithms work poorly in high dimensional
space (a phenomenon known as the curse of dimensionality).

Compression.

Data visualization.

...
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Basics 1

A vector vvv is a d × 1 matrix: vvv = (v [1], ..., v [d ])T .

A point can be represented as vector.

A vector vvv is a unit vector if
∑d

i=1 v [i ]2 = 1.

Dot product v1v1v1 · v2v2v2 =
∑d

i=1(v1[i ]v2[i ]).

If two vectors v1v1v1,v2v2v2 are orthogonal, v1v1v1 · v2v2v2 = 0.

Let ppp be a point and vvv a unit vector. Then, ppp · vvv gives the distance
from the origin to the projection of ppp on vvv .
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Basics 2

Let S be a set of real numbers r1, ..., rm. The mean of S equals:

mean(S) =
1

m

m∑
i=1

ri .

The variance of S equals:

var(S) =
1

m

m∑
i=1

(ri −mean(S))2.
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Basics 3

Let P be a set of 2d points p1, ..., pn. Its co-variance between dimensions
i and j (where 1 ≤ i ≤ j ≤ d) equals

cov =
1

n

n∑
k=1

(pk [i ]−meani )(pk [j ]−meanj)

where meani (meanj) is the mean of the coordinates in P along

dimension i (j).
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Basics 4

The co-variance matrix A of point set P is a d × d matrix whose value at
the i-th row and j-th column (i , j ∈ [1, d ]) is the co-variance of P
between dimensions i and j .

Note that A is symmetric, namely, A = AT .
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Basics 5

Let A be a d × d matrix. If for some real value d × 1 unit vector vvv , it
holds that

Avvv = λvvv

then v is called a unit eigenvector of A, and λ is called an eigenvalue of

A.
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Principle Component Analysis (PCA)

algorithm (P, k)
/* output: k ≤ d directional vectors */

1. shift P such that its geometric mean is at the origin of the data space
2. A← the co-variance matrix of P
3. compute all the d unit eigenvectors
4. arrange the eigenvectors in descending order of their eigenvalues
5. return the first k eigenvectors v1v1v1, ...,vkvkvk

Note

Each point ppp is then converted to a k-dimensional point whose i-th
(1 ≤ i ≤ d) coordinate is vivivi · ppp.
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Property of PCA

v1v1v1 is the direction along which the projections of P have the largest
variance. In general, vivivi (i > 1) is the direction along which P has the
largest variance, among all directions orthogonal to all of v1v1v1, ...,vi−1vi−1vi−1.

`

Next we will prove this fact for v1v1v1 and v2v2v2. Then, the case with v3v3v3, ...,vivivi
follows the same idea.
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Formally, let P be a set of n d-dimensional points with zero mean on all
dimensions. Let www be a unit vector. We can project P onto www to obtain a
set of 1d values: S = {ppp ·www | p ∈ P}. Define the quality of www be var(S).

Theorem 1

The first eigenvector output by PCA has the highest quality.
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Proof of Theorem 1

Let XXX be the n × d matrix where each row lists out the coordinates of a
point in P. Thus, we can view S as a vector XXXwww . Thus:

var(S) =
1

n
(XXXwww)T (XXXwww)

= wwwT XXXTXXX

n
www

= wwwTAAAwww

where AAA is the covariance matrix of P. Hence, we want to maximize the
above subject to the constraint that wwwTwww = 1.
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Proof of Theorem 1 (Cont.)

Now we apply the method of Lagrange multipliers to find the maximum.
Introduce a real value λ, and now consider the objective function

f (www , λ) = wwwTAAAwww − λ(wwwTwww − 1)⇒
∂f

∂www
= 2AAAwww − 2λwww

Equating the above 0 gives AAAwww = λwww . In other words, www needs to be an
eigenvector, and λ the corresponding eigenvalue.
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Proof of Theorem 1 (Cont.)

Now it remains to check which eigenvector gives the largest variance.
Observe that:

var(S) = wwwTAAAwww

= wwwTλwww

= λ

In other words, when we choose eigenvector www as our solution, its quality
is exactly the eigenvalue λ. Hence, the eigenvector with the maximum
eigenvalue is what we are looking for. �
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Recall our earlier definitions. P is a set of n d-dimensional points with
zero mean on all dimensions. Let www be a unit vector. Project P onto www
to obtain a set of 1d values: S = {ppp ·www | p ∈ P}. Define the quality of
www be var(S).

Theorem 2

The second eigenvector output by PCA has the highest quality, among all
the vectors www orthogonal to the first eigenvector v1v1v1.
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Proof of Theorem 2

Let AAA be the covariance matrix of P. As shown in the proof of
Theorem 1, we proved that

var(S) = wwwTAAAwww .

Hence, we want to maximize the above subject to the constraints
wwwTwww = 1 and wwwTv1v1v1 = 0.

Now we apply the method of Lagrange multipliers to find the maximum.
Introduce real values λ and φ, and now consider the objective function

f (www , λ, φ) = wwwTAAAwww − λ(wwwTwww − 1)− φwwwTv1v1v1 ⇒
∂f

∂www
= 2AAAwww − 2λwww − φv1v1v1.
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Proof of Theorem 2 (Cont.)

The optimal www needs to satisfy ∂f
∂www = 0, namely:

2AAAwww − 2λwww − φv1v1v1 = 0. (1)

Next we prove that φ must be 0. To see this, multiplying both sides of
(1) by v1v1v1

T , we get:

2v1v1v1
TAAAwww − 2λv1v1v1

Twww + φv1v1v1
Tv1v1v1 = 0. (2)

We know that v1v1v1
Twww = 0, and v1v1v1

Tv1v1v1 = 1. Furthermore,

v1v1v1
TAAAwww = wwwTAAATv1v1v1 = wwwTAAAv1v1v1 = wwwT (AAAv1v1v1) = wwwTv1v1v1 = 0.

Hence, from (2), we get φ = 0.
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Proof of Theorem 2 (Cont.)

Therefore, from (1), we know:

2AAAwww − 2λwww = 0

namely, www must also be an eigenvector.

From the proof of Theorem 1, we know that var(S) equals the eigenvalue
corresponding to www . This thus indicates that www is the eigenvector of A
with the second largest eigenvalue.
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When d is large, PCA is slow because it has to deal with a gigantic

matrix with d2 values. This motivates FastMap, which can be regarded

as a heuristic version of PCA that trades precision for efficiency.
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Heuristic 1 of FastMap. Assume that the vector between the farthest pair
of points in P captures a large amount of variance of P.

best vector

FastMap vector
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Heuristic 2 of FastMap. Use the following algorithm to find the farthest
pair of points in P

1 p1 ← a random point in P

2 p2 ← farthest point from p1

3 p1 ← farthest point from p2
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FastMap

algorithm (P, k)
/* output: k ≤ d directional vectors */

1. for i = 1 to k
2. find the pair (p1, p2) of farthest points in P (Heuristic 2)
3. vivivi = p2p2p2 − p1p1p1 (vector subtraction)
4. P ′ ← the point set obtained by projecting the points in P

onto the plane perpendicular to vi
5. P ← P ′

6. return v1, ..., vk
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