
1/43

Clustering by Connectivity

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1 / 43 Y Tao Clustering by Connectivity

2/43

The clusters found by centroid-based clustering (e.g., k-center and
k-means) tend to have “ball shapes”.

2 / 43 Y Tao Clustering by Connectivity

3/43

Sometimes clusters may have arbitrary shapes, e.g.:

Why does it make sense to discover such clusters?

3 / 43 Y Tao Clustering by Connectivity

4/43

Clustering and Unsupervised Learning

Recall that, in classification, we were given a labeled dataset,
namely, every point’s label was revealed. Finding a good classi-
fier on such datasets is a form of supervised learning.

Opposite to this is unsupervised learning. Imagine, e.g., in classi-
fication, we are given an unlabeled dataset, where we do not know
which points have label 0, and which points have label 1. How do
we learn a classifier?

A good approach in this scenario is to do clustering. We can
treat each cluster as a label, and thereby, get ourselves a “labeled”
dataset, from which a classifier can be learned.

Hence, it makes sens to discover clusters of arbitrary shapes — a

classification boundary may have an arbitrary shape!

4 / 43 Y Tao Clustering by Connectivity

5/43

Clustering by Connectivity is a form of clustering that is built on
“distance graphs”, and deviates significantly from centroid-based
clustering. We will discuss two clustering methods under this category:

Agglomerative clustering — also known as “hierarchical clustering”.

Density-based clustering

5 / 43 Y Tao Clustering by Connectivity

6/43

Agglomerative Clustering

6 / 43 Y Tao Clustering by Connectivity

7/43

Given a set P of n objects, the agglomerative method works as follows:

1 At the beginning, each object in P forms a cluster by itself.

2 Merge the two clusters that are most similar to each other.

3 Repeat the previous step until only one cluster is left.

The above framework can be instantiated in many ways depending on

how cluster similarity is defined. Specifically, let C1 and C2 be two

clusters, each being a set of objects. To measure their similarity, we need

a function d(C1,C2) such that the smaller the function’s value, the more

similar the two clusters.

7 / 43 Y Tao Clustering by Connectivity

8/43

Some common definitions for cluster similarity are:

dmin(C1,C2) = min
o1∈C1,o2∈C2

dist(o1, o2)

dmax(C1,C2) = max
o1∈C1,o2∈C2

dist(o1, o2)

dmean(C1,C2) =
1

|C1||C2|
∑

o1∈C1,o2∈C2

dist(o1, o2)

Among the three, dmin is the most popular—when this function is chosen,

the agglomerative framework on the previous slide is known as the single

linkage algorithm. We will focus on dmin in the rest of the lecture.

8 / 43 Y Tao Clustering by Connectivity

9/43

Example

a

b

c

d

e

d e a bc

Execution of the agglomerative method using the dmin metric:

1 Initially, 5 clusters: {a}, {b}, {c}, {d}, {e}.
2 Merging {d}, {e} ⇒ {a}, {b}, {c}, {d , e}.
3 Merging {a}, {b} ⇒ {a, b}, {c}, {d , e}.
4 Merging {c}, {d , e} ⇒ {a, b}, {c , d , e}.
5 Merging {c}, {d , e} ⇒ {a, b, c , d , e}.

The merging history of the algorithm can be represented as a tree (see
above), which is called a dendrogram.

9 / 43 Y Tao Clustering by Connectivity

10/43

Think:

How many merges are there in total if we have n objects?

Given a dendrogram, how would you obtain k clusters quickly?

Next, we will explain that a dendrogram can be regarded as a minimum

spanning tree. This naturally leads to an algorithm that computes a

dendrogram in O(n2 log n) time.

10 / 43 Y Tao Clustering by Connectivity

11/43

As before, let P be the set of n objects to be clustered. Define a
distance graph G (V ,E) as follows:

Every vertex of V corresponds to a distinct object in P.

G is a complete graph, namely, there is an edge between each pair
of vertices.

The edge between vertex o1 and o2 carries a weight equal to
dist(o1, o2).

Let T be a set of n − 1 edges of G . If T induces no cycles, we say that

T is a spanning tree. Define cost(T) to be the sum of the weights of

all the edges in T .

11 / 43 Y Tao Clustering by Connectivity

12/43

Example

a

b

c

d

e

a

b

c d

e

1

2

3

45

6
8

7

7.1

8.5

The figure on the right shows the distance graph.
The red edges indicate a spanning tree with cost 28.5.

12 / 43 Y Tao Clustering by Connectivity

13/43

The agglomerative framework essentially produces a spanning tree.

Example

a

b

c

d

e

a

b

c d

e

1

2

3

45

6
8

7

7.1

8.5

The figure on the right shows the edges that the agglomerative algorithm
uses to produce the dendrogram on Slide 9. Recall that the algorithm
picks these edges in ascending order of weight.

13 / 43 Y Tao Clustering by Connectivity

14/43

Let T ∗ be a spanning tree of the distance graph G . If for any other
spanning tree T , it always holds that cost(T ∗) ≤ cost(T), we say that
T ∗ is a minimum spanning tree (MST) of G .

Lemma

The agglomerative framework returns a minimum spanning tree of G .

Proof: The algorithm works in the same way as the Kruskal’s algorithm,
which is a well-known algorithm for finding an MST, and runs as follows.
At the beginning, initiate an empty set T . At each step, among all the
edges e satisfying

e is not in T yet;

the addition of e to T does not create a cycle;

add to T the one with the smallest weight. Repeat the step until T has
n − 1 edges.

Next we will prove that the algorithm indeed finds an MST.

14 / 43 Y Tao Clustering by Connectivity

15/43

Proof (cont.): Label the edges of T as 1, 2, ..., n in the order they are
discovered by the algorithm (i.e., the edge with label i is the i-th one
discovered).

Let T ∗ be an arbitrary MST of G . Let t be the smallest integer such
that the edge with label t does not belong to T ∗. If t does not exist,
then T = T ∗, and we are done. Otherwise, denote that edge as e. Let S
be the set of edges with labels 1, 2, ..., t − 1.

Now, add e to T ∗, which definitely gives a cycle. In this cycle, at least
one edge — say e′ — does not belong to S (otherwise, the entire cycle is
in S , which is impossible because T has no cycles). Observe that the
weight of e′ cannot be smaller than that of e: otherwise, Kruskal’s
algorithm would have used e′, instead of e (notice that, the edges with
labels 1, 2, ..., t − 1 cannot form a cycle with e′ because, by definition,
all those edges are in T ∗).

We now obtain another MST T ′∗ from T ∗ by deleting e′ and adding e.
Repeat the above argument using T ′∗ — note that when we do so, the
value of t increases by 1.

With this, we complete the proof.

15 / 43 Y Tao Clustering by Connectivity

16/43

Although not required in this course, it is worth mentioning that
sub-quadratic time algorithms exist for computing a dendrogram in
d-dimensional space where d is a constant (for point objects and
Euclidean distance). Specifically, the computation time is

O

(
n2

n
2

dd/2e+1−ε

)
time, where ε can be an arbitrarily small constant. Interested students
may refer to:

Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf:

Euclidean Minimum Spanning Trees and Bichromatic Closest Pairs.

Discrete & Computational Geometry 6: 407-422 (1991).

16 / 43 Y Tao Clustering by Connectivity

17/43

Density-Based Clustering

17 / 43 Y Tao Clustering by Connectivity

18/43

In some applications, clusters can have arbitrary shapes and may need to
be separated from noise:

(figures from a KDD96 paper titled “A density-based algorithm for
discovering clusters in large spatial databases with noise”)

18 / 43 Y Tao Clustering by Connectivity

19/43

We will learn a method called DBSCAN to find such clusters. It serves as
a representative of noise-resistant density-based clustering, which works
by enforcing two principles:

The area around a noise point is “sparse”.

If two points are placed in the same cluster, it should be possible to
“walk” from one point to the other by staying only in the “dense”
areas.

19 / 43 Y Tao Clustering by Connectivity

20/43

Parameters and Core Points

Parameters:

ε: a distance threshold.
MinPts: a constant integer.

B(p, ε): the ball centered at a
point with radius ε, called the
vicinity area of p.

P: the set of points to cluster

Core point: a point p ∈ P such
that B(p, ε) covers at least MinPts
points of P.

o1

o2
o3

o4

o5

o18

o6

o7
o8

o9

o10

o11

o12

o13

o14
o15

o16
o17

ε

MinPts = 4
Core points in black

20 / 43 Y Tao Clustering by Connectivity

21/43

Forming Clusters

Conceptually, clusters are defined in two steps:

1 Cluster core points.

2 Assign non-core points.

We will explain each step in turn.

21 / 43 Y Tao Clustering by Connectivity

22/43

Step 1: Cluster core points

This step focuses only on core points.

o1

o2
o3

o4

o5 o6

o7
o8

o9

o11

o12

o13

o14
o15

o16
o17

MinPts = 4
Core points in black

22 / 43 Y Tao Clustering by Connectivity

23/43

Step 1: Cluster core points

Connect a core point p to all the points in B(p, ε).

For example, o1 is connected to 4 points in its vicinity area:

o1

o2
o3

o4

o5 o6

o7
o8

o9

o11

o12

o13

o14
o15

o16
o17

MinPts = 4
Core points in black

23 / 43 Y Tao Clustering by Connectivity

24/43

Step 1: Cluster core points

This is the situation after adding all the edges:

o1

o2
o3

o4

o5 o6

o7
o8

o9

o11

o12

o13

o14
o15

o16
o17

24 / 43 Y Tao Clustering by Connectivity

25/43

Step 1: Cluster core points

Take each connected component of the resulting a graph as a cluster.

o1

o2
o3

o4

o5 o6

o7
o8

o9

o11

o12

o13

o14
o15

o16
o17

25 / 43 Y Tao Clustering by Connectivity

26/43

Step 2: Assign non-core points

Every non-core point p is added to the cluster of every core point in
B(p, ε). For example, o10 is added to two clusters: the cluster of o1 and
the cluster of o11.

o1

o2
o3

o4

o5

o18

o6

o7
o8

o9

o10

o11

o12

o13

o14
o15

o16
o17

ε

noise

assign to both clusters

MinPts = 4

Each non-core point can be assigned to at most MinPts − 1 = O(1)
clusters.

26 / 43 Y Tao Clustering by Connectivity

27/43

Step 2: Assign non-core points

Final clusters: {o1, o2, ..., o9, o10}, {o10, o11, o12, ..., o17}.

o1

o2
o3

o4

o5

o18

o6

o7
o8

o9

o10

o11

o12

o13

o14
o15

o16
o17

ε

noise

assign to both clusters

MinPts = 4

The clustering result is unique.

27 / 43 Y Tao Clustering by Connectivity

28/43

It is straightforward to obtain the DBSCAN clusters in O(n2) time,
where n is the number of points (think: how), treating d as a
constant.

In several textbooks, it is claimed that the time can be improved to
O(n polylog n). Unfortunately, this is unlikely to be possible when
the dimensionality d is at least 3, as we explain next.

28 / 43 Y Tao Clustering by Connectivity

29/43

The following material will not be tested.

29 / 43 Y Tao Clustering by Connectivity

30/43

Geometry Preliminary 1: Unit-Spherical Emptiness Checking (USEC)

Let Spt be a set of points, and Sball be a set of balls with the same
radius, all in data space Rd , where the dimensionality d is a constant.

The objective of USEC is to determine whether there is a point of Spt
that is covered by some ball in Sball .

Known results:
d = 2: Solvable in O(n log n) time.
d = 3: Solvable O((n log n)4/3) time.
Big open problem: o(n4/3) for d = 3?

Common conjecture: no.

30 / 43 Y Tao Clustering by Connectivity

31/43

Geometry Preliminary 2: Hopcroft

Let Spt be a set of points, and Sline be a set of lines, all in data space R2

(note that the dimensionality is always 2).

The goal of the Hopcroft’s problem is to determine whether there is a
point in Spt that lies on some line of Sline .

Known results: Solvable in time slightly higher than O(n4/3).
Big open problem: o(n4/3) possible?
Common conjecture: No.
Ω(n4/3) lower bound known on a broad class of algorithms.

31 / 43 Y Tao Clustering by Connectivity

32/43

Geometry Preliminary 3: Hopcroft Hardness

We will call a problem X Hopcroft hard if an algorithm solving X in
o(n4/3) time implies an algorithm solving the Hopcroft’s problem in
o(n4/3) time.

Fact: USEC is Hopcroft hard for d ≥ 5.

32 / 43 Y Tao Clustering by Connectivity

33/43

We will prove:

Theorem

The following statements are true about the DBSCAN problem:

It is Hopcroft hard in any dimensionality d ≥ 5.

Namely, the problem requires Ω(n4/3) time to solve, unless the
Hopcroft problem can be settled in o(n4/3) time.

When d = 3 (and hence, d = 4), the problem requires Ω(n4/3) time
to solve, unless the USEC problem can be settled in o(n4/3) time.

33 / 43 Y Tao Clustering by Connectivity

34/43

More specifically, we will prove:

Lemma

For any constant dimensionality d , if we can solve the DBSCAN problem
in T (n) time, then we can solve the USEC problem in T (n) + O(n) time.

The theorem is a corollary of this lemma (think: why).

34 / 43 Y Tao Clustering by Connectivity

35/43

USEC

Let Spt be a set of points, and Sball be a set of balls with the same
radius, all in data space Rd , where the dimensionality d is a constant.
The objective of USEC is to determine whether there is a point of Spt
that is covered by some ball in Sball .

Next, we give a reduction from USEC to DBSCAN. Specifically, given a

DBSCAN algorithm A, we show how to solve USEC by using A as a

black box.

35 / 43 Y Tao Clustering by Connectivity

36/43

Using DBSCAN to Solve USEC

36 / 43 Y Tao Clustering by Connectivity

37/43

Using DBSCAN to Solve USEC

Obtain P as the union of Spt and the set of centers of the balls in Sball .

37 / 43 Y Tao Clustering by Connectivity

38/43

Using DBSCAN to Solve USEC

Run the DBSCAN algorithm A to cluster P with

Set ε to the radius of the balls.

MinPts = 1.

38 / 43 Y Tao Clustering by Connectivity

39/43

Using DBSCAN to Solve USEC

Run the DBSCAN algorithm A to cluster P with

Set ε to the radius of the balls.

MinPts = 1.

39 / 43 Y Tao Clustering by Connectivity

40/43

Using DBSCAN to Solve USEC

Run the DBSCAN algorithm A to cluster P with

ε = the radius of the balls.

MinPts = 1.

40 / 43 Y Tao Clustering by Connectivity

41/43

Using DBSCAN to Solve USEC

Check if any red square and black circle are put in the same cluster.

If so, say “yes” to USEC.

Otherwise, say “no”.

Running time T (n) + O(n).

41 / 43 Y Tao Clustering by Connectivity

42/43

Using DBSCAN to Solve USEC

Correctness: An original circle covers a point if and only if we say
yes.

Proof: The only-if direction is obvious (think: why?). We will focus on
proving the if-direction.

? ? ? ? ?
p1 pt

A “yes” answer means that there is a sequence of points p1, p2, ..., pt ∈ P

such that (i) p1 is red and pt is black, and (ii) dist(pi , pi+1) ≤ r for each

i ∈ [1, t − 1]. Let k be the smallest i ∈ [2, t] such that pi is black. Note

that k definitely exists because pt is black. It thus follows that the ball

centered at pk−1 covers the point pk in the original USEC problem.

42 / 43 Y Tao Clustering by Connectivity

43/43

Recall the single-linkage algorithm we discussed in the previous
lecture. There is an inherent connection between single-linkage
and DBSCAN.

Think: Suppose that you have computed a dendrogram for single-
linkage. How would you use the dendrogram to obtain a DBSCAN
clustering with parameterized by ε > 0 and minPts = 1?

43 / 43 Y Tao Clustering by Connectivity

