Multiclass Classification

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

э

1/22

イロト イポト イヨト イヨト

Classification (Re-defined)

Let $A_1, ..., A_d$ be d attributes.

Define the **instance space** as $\mathcal{X} = dom(A_1) \times dom(A_2) \times ... \times dom(A_d)$ where $dom(A_i)$ represents the set of possible values on A_i .

Define the label space as $\mathcal{Y} = \{1, 2, ..., k\}$ (the elements in \mathcal{Y} are called the class labels).

Each instance-label pair (a.k.a. object) is a pair (x, y) in $\mathcal{X} \times \mathcal{Y}$.

 x is a vector; we use x[A_i] to represent the vector's value on A_i (1 ≤ i ≤ d).

Denote by \mathcal{D} a probabilistic distribution over $\mathcal{X} \times \mathcal{Y}$.

2/22

化口下 化塑下 化医下水 医下

Classification (Re-defined)

Goal: Given an object (x, y) drawn from \mathcal{D} , we want to predict its label y from its attribute values $x[A_1], ..., x[A_d]$.

We will find a function

$$h:\mathcal{X}
ightarrow \mathcal{Y}$$

which is referred to as a **classifier** (sometimes also called a **hypothesis**). Given an instance x, we predict its label as h(x).

The error of h on \mathcal{D} — denoted as $err_{\mathcal{D}}(h)$ — is defined as:

$$err_{\mathcal{D}}(h) = \mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h(\mathbf{x})\neq y]$$

namely, if we draw an object (x, y) according to \mathcal{D} , what is the probability that *h* mis-predicts the label?

Ideally, we want to find an h to minimize $err_{\mathcal{D}}(h)$, but this in general is not possible without the precise information about \mathcal{D} .

Instead, We would like to learn a classifier h with small $err_{\mathcal{D}}(h)$ from a **training set** *S* where each object is drawn independently from \mathcal{D} .

4/22

• • • • • • • • • • • •

Classification – Redefined

In training, we are given a sample set S of D, where each object in S is drawn independently according to D. We refer to S as the training set.

We would like to learn our classifier h from S.

The key difference from what we have discussed before is that the number k of classes can be anything (in binary classifications, k = 2). We will refer to this version of classification as **multiclass** classification.

Think: How would you adapt the decision tree method and Bayes' method to multiclass classification?

Next, assuming that every $dom(A_i)$ $(1 \le i \le d)$ is the real domain \mathbb{R} , we will extend linear classifiers and Perceptron to multiclass classification.

6/22

▲□ ► ▲ □ ►

Linear Classification – Generalized

A generalized linear classifiers is defined by k d-dimensional vectors $w_1, w_2, ..., w_k$. Given a point p in \mathbb{R}^d , the classifier predicts its class label as

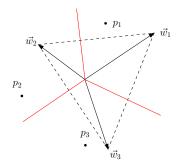
 $\underset{i \in [1,k]}{\operatorname{arg max}} \boldsymbol{w}_i \cdot \boldsymbol{p}.$

Namely, it returns the label $i \in [1, k]$ that gives the largest $w_i \cdot p$.

Tie breaking: In the special case where two distinct $i, j \in [1, d]$ achieve the maximum (i.e., $\boldsymbol{w}_i \cdot \boldsymbol{p} = \boldsymbol{w}_j \cdot \boldsymbol{p}$), we can break the tie using some consistent policy, e.g., predicting the label as the smaller between i and j.

7/22

- 日本 - マン・



Points p_1 , p_2 , and p_3 will be classified as label 1, 2, and 3, respectively.

Think: What do the three red rays stand for?

Yufei Tao

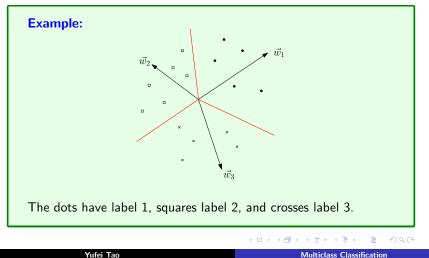
8/22

< 4 → <

A training set S is **linearly separable** if there exist $w_1, ..., w_d$ that

- correctly classify all the points in *S*;
- for every point $p \in S$ with label ℓ , $w_{\ell} \cdot p > w_z \cdot p$ for every $z \neq \ell$.

The set $\{\boldsymbol{w}_1, ..., \boldsymbol{w}_d\}$ is said to separate *S*.



ei	Тао	Multiclass Classification	

Next we will discuss an algorithm that extends the Perceptron algorithm to find a set of weight vectors to separate S, provided that S is linearly separable. We will refer to the algorithm as **multiclass Perceptron**.

10/22

Multiclass Perceptron

- 1. $\boldsymbol{w}_i \leftarrow \boldsymbol{0}$ for all $i \in [1, k]$
- 2. while there is a violation point $p \in S$
 - /* namely, p mis-classified by $\{ \boldsymbol{w}_1,...,\boldsymbol{w}_k \}$ */
- 3. $\ell \rightarrow$ the **real label** of *p*
- 4. $z \rightarrow$ the **predicted label** of p/* $\ell \neq z$ since p is a violation point */
- 5. $\boldsymbol{w}_{\ell} \leftarrow \boldsymbol{w}_{\ell} + \boldsymbol{p}$
- 6. $\boldsymbol{w}_z \leftarrow \boldsymbol{w}_z \boldsymbol{p}$

When k = 2, the above algorithm degenerates into (the conventional) Perceptron. Can you see why?

"Margin"

Let W be a set of weight vectors $\{w_1, ..., w_k\}$ that separates S.

Given a point $p \in S$ with label ℓ , let us define its margin under W as

$$margin(p \mid W) = \min_{z \neq \ell} \frac{\boldsymbol{w}_{\ell} \cdot \boldsymbol{p} - \boldsymbol{w}_{z} \cdot \boldsymbol{p}}{\sqrt{2\sum_{i=1}^{k} |\boldsymbol{w}_{i}|^{2}}}$$

The margin of p under W is a way to measure how "confidently" W gives p the class label ℓ . **Think:** why?

The margin of W equals the smallest margin of all points under W:

$$margin(W) = \min_{p \in S} margin(p \mid W).$$

"Margin"

Let W^* be a set of weight vectors that (i) separates S, and (ii) has the largest margin.

Define

$$\gamma = margin(W^*).$$

As before, define the radius of S as

$$R = \max_{p \in S} |p|.$$

13/22

Theorem: Multiclass Perceptron stops after processing at most R^2/γ^2 violation points.

This is the general version of the theorem we have already learned on (the old) Perceptron.

14/22

▲ □ ▶ ▲ □ ▶

Let *M* be a $d \times k$ matrix. We use M[i, j] to denote the element at the *i*-th row and *j*-th column $(1 \le i \le d, 1 \le j \le k)$.

The **Frobenius norm** of M, denoted as $|M|_F$, is:

$$|M|_{\mathsf{F}} = \sqrt{\sum_{i,j} M[i,j]^2}.$$

Here is an easy way to appreciate the above norm: think of M as a (dk)-dimensional vector by concatenating all its rows; then $|M|_F$ is simply the length of that vector.

Given two $d \times k$ matrices M_1, M_2 , the (matrix) **dot product** operation gives a new $d \times k$ matrix M where

$$M[i,j] = M_1[i,j] \cdot M_2[i,j].$$

15/22

Proof of the theorem on Slide 14: The algorithm maintains a set of vectors $\{w_1, ..., w_k\}$. Each w_i $(1 \le i \le k)$ is a $d \times 1$ vector.

Henceforth, we will regard a set of vectors $\{\boldsymbol{w}_1, ..., \boldsymbol{w}_k\}$ as a $d \times k$ matrix W, where the *i*-th $(i \in [1, k])$ row of W is the transpose of \boldsymbol{w}_i (i.e., a $1 \times d$ vector).

Define *t* as the number of violation points.

The algorithm performs t adjustments to W. Denote by W_j $(j \in [1, t])$ as the W after the *j*-th adjustment. Define specially W_0 the $d \times k$ matrix with all 0's.

Denote by W^* the $d \times k$ matrix that corresponds to an optimal set of weight vectors $\{w_1^*, ..., w_d^*\}$ whose margin is γ .

16/22

イロト イポト イヨト イヨト

Claim 1: $W^* \cdot W_t \ge \sqrt{2}t\gamma \cdot |W^*|_F$.

Proof: Consider any $j \in [1, t]$. Let p be the violation point that caused the *j*-th adjustment. Let ℓ be the real label of p, and z the label predicted by W_{j-1} .

Define Δ as the $d \times k$ matrix such that

- The ℓ -th row of Δ is the transpose of \boldsymbol{p} .
- The z-th row of Δ is the transpose of $(-1) \cdot \boldsymbol{p}$.
- All the other rows are 0.

Hence, $W_j = W_{j-1} + \Delta$, which means:

$$W^* \cdot W_j = W^* \cdot W_{j-1} + W^* \cdot \Delta.$$

We will prove $W^* \cdot \Delta \ge \sqrt{2}\gamma \cdot |W^*|_F$, which will complete the proof of Claim 1.

$$W^* \cdot \Delta = \boldsymbol{w}_{\ell}^* \cdot \boldsymbol{p} - \boldsymbol{w}_{z}^* \cdot \boldsymbol{p}$$

$$\geq \gamma \sqrt{2 \sum_{i=1}^{k} |\boldsymbol{w}_{i}^*|^2}$$

$$= \gamma \sqrt{2 |W^*|_{F}^2}$$

$$= \sqrt{2} \gamma \cdot |W^*|_{F}.$$

18/22

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ▲日 >

Claim 2: $|W_t|_F^2 \le 2tR^2$.

Proof: Consider any $j \in [1, t]$. Let p be the violation point that caused the *j*-th adjustment. Let ℓ be the real label of p, and z the label predicted by W_{j-1} . Suppose that $W_{j-1} = \{u_1, ..., u_k\}$.

Since p is a violation point, we must have:

 $u_{\ell} \cdot p \leq u_z \cdot p$

Denote by \mathbf{v}_{ℓ} the new vector for class label ℓ after the update, and similarly by \mathbf{v}_z the new vector for class label z after the update. By how the algorithm runs, we have:

$$\mathbf{v}_{\ell} = \mathbf{u}_{\ell} + \mathbf{p}$$
$$\mathbf{v}_{\tau} = \mathbf{u}_{\tau} - \mathbf{p}$$

We have

$$\begin{aligned} |\mathbf{v}_{\ell}|^{2} + |\mathbf{v}_{z}|^{2} &= (\mathbf{u}_{\ell} + \mathbf{p})^{2} + (\mathbf{u}_{z} - \mathbf{p})^{2} \\ &= |\mathbf{u}_{\ell}|^{2} + |\mathbf{u}_{z}|^{2} + 2|\mathbf{p}|^{2} + 2(\mathbf{u}_{\ell} \cdot \mathbf{p} - \mathbf{u}_{z} \cdot \mathbf{p}) \\ \text{(as \mathbf{p} is a violation point)} &\leq |\mathbf{u}_{\ell}|^{2} + |\mathbf{u}_{z}|^{2} + 2|\mathbf{p}|^{2} \\ &\leq |\mathbf{u}_{\ell}|^{2} + |\mathbf{u}_{z}|^{2} + 2R^{2}. \end{aligned}$$

Observe that

$$|W_j|_F^2 - |W_{j-1}|_F^2 = (|\boldsymbol{v}_\ell|^2 + |\boldsymbol{v}_z|^2) - (|\boldsymbol{u}_\ell|^2 + |\boldsymbol{u}_z|^2)$$

We therefore have

$$|W_j|_F^2 - |W_{j-1}|_F^2 \le 2R^2.$$

This completes the proof of the claim.

20/22

・ロト ・ 戸 ・ ・ ヨ ・ ・

Claim 3: $W^* \cdot W_t \leq |W^*|_F \cdot |W_t|_F$.

Yufei Tao

Proof: The claim follows immediately from the following general result:

Let \boldsymbol{u} and \boldsymbol{v} be two vectors of the same dimensionality; it always holds that $\boldsymbol{u} \cdot \boldsymbol{v} \leq |\boldsymbol{u}| |\boldsymbol{v}|$.

The above is true because $\boldsymbol{u} \cdot \boldsymbol{v} = |\boldsymbol{u}| |\boldsymbol{v}| \cos \theta$ where θ is the angle between the two vectors.

By combining Claims 1-3, we have:

$$\begin{aligned} \sqrt{2}t\gamma |W^*|_F &\leq |W^*|_F \cdot |W_t|_F \leq |W^*|_F \cdot \sqrt{2t}R \\ &\Rightarrow t &\leq R^2/\gamma^2. \end{aligned}$$

This completes the proof of the theorem.

22/22

(日)