Multiclass Classification

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

 \mathbb{B} is **Yufei Tao 2018 - Property Controllering Classification**

э

 QQ

 4 O \rightarrow 4 $\overline{7}$ \rightarrow 4 $\overline{2}$ \rightarrow 4

1/22

Classification (Re-defined)

Let $A_1, ..., A_d$ be d attributes.

Define the **instance space** as $\mathcal{X} = \text{dom}(A_1) \times \text{dom}(A_2) \times ... \times \text{dom}(A_d)$ where $\mathit{dom}(A_i)$ represents the set of possible values on $A_i.$ Define the label space as $\mathcal{Y} = \{1, 2, ..., k\}$ (the elements in $\mathcal Y$ are called

the class labels).

Each **instance-label pair** (a.k.a. **object**) is a pair (x, y) in $\mathcal{X} \times \mathcal{Y}$.

 \boldsymbol{x} is a vector; we use $\boldsymbol{x}[A_i]$ to represent the vector's value on A_i $(1 < i < d)$.

Denote by $\mathcal D$ a probabilistic distribution over $\mathcal X \times \mathcal Y$.

 4 m \rightarrow 4 \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow

2/22

Classification (Re-defined)

Goal: Given an object (x, y) drawn from D , we want to predict its label y from its attribute values $x[A_1], ..., x[A_d]$.

We will find a function

$$
h:\mathcal{X}\rightarrow\mathcal{Y}
$$

which is referred to as a classifier (sometimes also called a **hypothesis**). Given an instance x, we predict its label as $h(x)$.

The error of h on \mathcal{D} — denoted as $err_{\mathcal{D}}(h)$ — is defined as:

$$
err_{\mathcal{D}}(h) = \mathbf{Pr}_{(\mathbf{x}, y) \sim \mathcal{D}}[h(\mathbf{x}) \neq y]
$$

namely, if we draw an object (x, y) according to D, what is the probability that h mis-predicts the label?

イロト イ母 トイラト イラト

3/22

Ideally, we want to find an h to minimize err_D(h), but this in general is not possible without the precise information about D.

Instead, We would like to learn a classifier h with small $err_D(h)$ from a training set S where each object is drawn independently from D .

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

4/22

Classification – Redefined

In training, we are given a sample set S of D, where each object in S is drawn independently according to D . We refer to S as the training set.

We would like to learn our classifier h from S.

The key difference from what we have discussed before is that the number k of classes can be anything (in binary classifications, $k = 2$). We will refer to this version of classification as **multiclass** classification.

5/22

Think: How would you adapt the decision tree method and Bayes' method to multiclass classification?

Next, assuming that every $dom(A_i)$ $(1 \leq i \leq d)$ is the real domain $\mathbb R$, we will extend linear classifiers and Perceptron to multiclass classification.

イロト イ母 トイミト

6/22

Linear Classification – Generalized

A **generalized linear classifiers** is defined by k d-dimensional vectors $w_1, w_2, ..., w_k$. Given a point p in \mathbb{R}^d , the classifier predicts its class label as

> arg max $w_i\cdot p$. $i \in [1, k]$

Namely, it returns the label $i \in [1,k]$ that gives the largest $\bm w_i \cdot \bm p$.

Tie breaking: In the special case where two distinct $i, j \in [1, d]$ achieve the maximum (i.e., $\bm{w}_i\cdot\bm{\rho}=\bm{w}_j\cdot\bm{\rho}$), we can break the tie using some consistent policy, e.g., predicting the label as the smaller between i and j .

 $AB + AB$

7/22

Points p_1, p_2 , and p_3 will be classified as label 1, 2, and 3, respectively.

Think: What do the three red rays stand for?

- 4 - 同 - 5

Tanglet Tao Australia Science Australia Science Australia [Multiclass Classification](#page-0-0)

8/22

A training set S is linearly separable if there exist $w_1, ..., w_d$ that

- \bullet correctly classify all the points in S;
- **•** for every point $p \in S$ with label ℓ , $w_{\ell} \cdot p > w_z \cdot p$ for every $z \neq \ell$.

The set $\{w_1, ..., w_d\}$ is said to **separate** S.

Next we will discuss an algorithm that extends the Perceptron algorithm to find a set of weight vectors to separate S , **provided that** S is linearly separable. We will refer to the algorithm as *multiclass* Perceptron.

- 同 → → 三 → →

10/22

Multiclass Perceptron

- 1. $w_i \leftarrow 0$ for all $i \in [1, k]$
- 2. while there is a violation point $p \in S$
	- /* namely, p mis-classified by $\{w_1, ..., w_k\}$ */
- 3. $\ell \rightarrow$ the real label of p
- 4. $z \rightarrow$ the **predicted label** of p /* $\ell \neq z$ since p is a violation point */
- 5. $w_{\ell} \leftarrow w_{\ell} + p$
- 6. $w_z \leftarrow w_z p$

When $k = 2$, the above algorithm degenerates into (the conventional) Perceptron. Can you see why?

11/22

"Margin"

Let W be a set of weight vectors $\{w_1, ..., w_k\}$ that separates S.

Given a point $p \in S$ with label ℓ , let us define its **margin under** W as

$$
margin(p \mid W) = \min_{z \neq \ell} \frac{\mathbf{w}_{\ell} \cdot \mathbf{p} - \mathbf{w}_{z} \cdot \mathbf{p}}{\sqrt{2 \sum_{i=1}^{k} |\mathbf{w}_{i}|^{2}}}.
$$

The margin of p under W is a way to measure how "confidently" W gives p the class label ℓ . Think: why?

The **margin** of W equals the **smallest** margin of all points under W :

$$
margin(W) = \min_{p \in S} margin(p \mid W).
$$

12/22

"Margin"

Let W^* be a set of weight vectors that (i) separates S, and (ii) has the largest margin.

Define

$$
\gamma = margin(W^*).
$$

As before, define the **radius** of S as

$$
R=\max_{p\in S}|p|.
$$

 $A \Box B$ A

13/22

Theorem: Multiclass Perceptron stops after processing at most R^2/γ^2 violation points.

This is the general version of the theorem we have already learned on (the old) Perceptron.

 $\left\{ \bigoplus_k \lambda_k \in \mathbb{R}^n \right\}$

14/22

Let M be a $d \times k$ matrix. We use $M[i, j]$ to denote the element at the *i*-th row and *j*-th column $(1 \le i \le d, 1 \le j \le k)$.

The **Frobenius norm** of M, denoted as $|M|_F$, is:

$$
|M|_F = \sqrt{\sum_{i,j} M[i,j]^2}.
$$

Here is an easy way to appreciate the above norm: think of M as a (*dk*)-dimensional vector by concatenating all its rows; then $|M|_F$ is simply the length of that vector.

Given two $d \times k$ matrices M_1, M_2 , the (matrix) **dot product** operation gives a new $d \times k$ matrix M where

$$
M[i,j] = M_1[i,j] \cdot M_2[i,j].
$$

Yufei Tao Number of Australian Classification [Multiclass Classification](#page-0-0)

イロト イ押 トイラト イラト

15/22

Proof of the theorem on Slide [14:](#page-13-0) The algorithm maintains a set of vectors $\{w_1, ..., w_k\}$. Each w_i $(1 \le i \le k)$ is a $d \times 1$ vector.

Henceforth, we will regard a set of vectors $\{w_1, ..., w_k\}$ as a $d \times k$ matrix W, where the *i*-th $(i \in [1, k])$ row of W is the **transpose** of w_i (i.e., a $1 \times d$ vector).

Define t as the number of violation points.

The algorithm performs t adjustments to W. Denote by W_i $(j \in [1, t])$ as the W after the *j*-th adjustment. Define specially W_0 the $d \times k$ matrix with all 0's

Denote by W^* the $d \times k$ matrix that corresponds to an optimal set of weight vectors $\{w_1^*,...,w_d^*\}$ whose margin is $\gamma.$

16/22

Claim 1: $W^* \cdot W_t \geq$ $\sqrt{2}t\gamma\cdot|W^*|_F.$

Proof: Consider any $j \in [1, t]$. Let p be the violation point that caused the *j*-th adjustment. Let ℓ be the real label of p, and z the label predicted by W_{i-1} .

Define Λ as the $d \times k$ matrix such that

- The ℓ -th row of Δ is the transpose of **p**.
- The z-th row of Δ is the transpose of $(-1) \cdot p$.
- **All the other rows are 0.**

Hence, $W_i = W_{i-1} + \Delta$, which means:

$$
W^* \cdot W_j = W^* \cdot W_{j-1} + W^* \cdot \Delta.
$$

We will prove $W^* \cdot \Delta \geq$ $\sqrt{2}\gamma\cdot|W^*|_F$, which will complete the proof of Claim 1.

17/22

$$
W^* \cdot \Delta = \mathbf{w}_\ell^* \cdot \mathbf{p} - \mathbf{w}_z^* \cdot \mathbf{p}
$$

\n
$$
\geq \gamma \sqrt{2 \sum_{i=1}^k |w_i^*|^2}
$$

\n
$$
= \gamma \sqrt{2|W^*|_F^2}
$$

\n
$$
= \sqrt{2}\gamma \cdot |W^*|_F.
$$

Tangelering Classification [Multiclass Classification](#page-0-0)

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 「重 」 約 9,0%。

18/22

П

Claim 2: $|W_t|_F^2 \le 2tR^2$.

Proof: Consider any $j \in [1, t]$. Let p be the violation point that caused the *j*-th adjustment. Let ℓ be the real label of p, and z the label predicted by W_{i-1} . Suppose that $W_{i-1} = \{u_1, ..., u_k\}$.

Since p is a violation point, we must have:

 $u_{\ell} \cdot p \leq u_{z} \cdot p$

Denote by \mathbf{v}_ℓ the new vector for class label ℓ after the update, and similarly by v_z the new vector for class label z after the update. By how the algorithm runs, we have:

$$
\begin{array}{rcl}\n\mathbf{v}_{\ell} & = & \mathbf{u}_{\ell} + \mathbf{p} \\
\mathbf{v}_{z} & = & \mathbf{u}_{z} - \mathbf{p}\n\end{array}
$$

19/22

We have

$$
|\mathbf{v}_{\ell}|^{2} + |\mathbf{v}_{z}|^{2} = (\mathbf{u}_{\ell} + \mathbf{p})^{2} + (\mathbf{u}_{z} - \mathbf{p})^{2}
$$

\n
$$
= |\mathbf{u}_{\ell}|^{2} + |\mathbf{u}_{z}|^{2} + 2|\mathbf{p}|^{2} + 2(\mathbf{u}_{\ell} \cdot \mathbf{p} - \mathbf{u}_{z} \cdot \mathbf{p})
$$

\n(as \mathbf{p} is a violation point) $\leq |\mathbf{u}_{\ell}|^{2} + |\mathbf{u}_{z}|^{2} + 2|\mathbf{p}|^{2}$
\n
$$
\leq |\mathbf{u}_{\ell}|^{2} + |\mathbf{u}_{z}|^{2} + 2R^{2}.
$$

Observe that

$$
|W_j|_F^2 - |W_{j-1}|_F^2 = (|\mathbf{v}_{\ell}|^2 + |\mathbf{v}_{z}|^2) - (|\mathbf{u}_{\ell}|^2 + |\mathbf{u}_{z}|^2)
$$

We therefore have

$$
|W_j|_F^2 - |W_{j-1}|_F^2 \leq 2R^2.
$$

This completes the proof of the claim.

∍

 $A \equiv 1 + A \pmod{1} \Rightarrow A \equiv 1 + A \equiv 1$

20/22

 \Box

Claim 3: $W^* \cdot W_t \leq |W^*|_F \cdot |W_t|_F$.

Proof: The claim follows immediately from the following general result:

Let \boldsymbol{u} and \boldsymbol{v} be two vectors of the same dimensionality; it always holds that $\mathbf{u} \cdot \mathbf{v} \leq |\mathbf{u}||\mathbf{v}|$.

The above is true because $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}| \cos \theta$ where θ is the angle between the two vectors.

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

21/22

By combining Claims 1-3, we have:

$$
\sqrt{2}t\gamma|W^*|_F \leq |W^*|_F \cdot |W_t|_F \leq |W^*|_F \cdot \sqrt{2t}R
$$

\n
$$
\Rightarrow t \leq R^2/\gamma^2.
$$

This completes the proof of the theorem.

∍

 $A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B$

22/22