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Classification

Let A1, ...,Ad be d attributes, where Ai (i ∈ [1, d ]) has domain
dom(Ai ) = R.

Instance space X = dom(A1)× dom(A2)× ...× dom(Ad) = Rd .

Label space Y = {−1, 1}.

Each instance-label pair (a.k.a. object) is a pair (x , y) in X × Y.

x is a vector; we use x [Ai ] to represent the vector’s value on Ai

(1 ≤ i ≤ d).

Denote by D a probabilistic distribution over X × Y.
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Classification

Goal: Given an object (x , y) drawn from D, we want to predict its
label y from its attribute values x [A1], ..., x [Ad ].

A classifier is a function
h : X → Y.

Denote by H a collection of classifiers.

The error of h on D (i.e., generalization error) is defined as:

errD(h) = Pr (x,y)∼D[h(x) 6= y ].

We want to learn a classifier h ∈ H with small errD(h) from a
training set S where each object is drawn independently from D.
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We want to learn a classifier h ∈ H with small errD(h) from a
training set S where each object is drawn independently from D.

The error of h on S (i.e., empirical error) is defined as:

errS(h) =

∣∣∣(x , y) ∈ S | h(x) 6= y
∣∣∣

|S | .
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Shattering

Let P be a set of points in Rd . Given a classifier h ∈ H, we define:

Ph = {p ∈ P | h(p) = 1}

namely, the set of points in P that h classifies as 1.

H shatters P if, for any subset P ′ ⊆ P, there exists a classifier
h ∈ H satisfying P ′ = Ph.
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Example: An extended linear classifier h is described by a d-
dimensional weight vector w and a threshold τ . Given an instance
x ∈ Rd , h(x) = 1 if w · x ≥ τ , or −1 otherwise. Let H be the set
of all extended linear classifiers.

In 2D space, H shatters the set P of points shown below.
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Example (cont.): Can you find 4 points in R2 that can be shat-
tered by H?

The answer is no. Can you prove this?
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VC Dimension

Let P be a subset of X . The VC-dimension of H on P is the size
of the largest subset P ⊆ P that can be shattered by H.

If the VC-dimension is λ, we write VC-dim(P,H) = λ.
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VC Dimension of Extended Linear Classifiers

Theorem: Let H be the set of extended linear classifiers.
VC-dim(Rd ,H) = d + 1.

The proof is outside the syllabus.

Example: We have seen earlier that when d = 2, H can shatter
at least one set of 3 points but cannot shatter any set of 4 points.
Hence, VC-dim(R2,H) = 3.

Think: Now consider H as the set of linear classifiers (where
the threshold τ is fixed to 0). What can you say about
VC-dim(Rd ,H)?
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VC-Based Generalization Theorem

The support set of D is the set of points in Rd that have a positive
probability to be drawn according to D.

Theorem: Let P be the support set of D and set λ =
VC-dim(P,H). Fix a value δ satisfying 0 < δ ≤ 1. It holds
with probability at least 1− δ that

errD(h) ≤ errS(h) +

√
8 ln 4

δ + 8λ · ln 2e|S|
λ

|S | .

for every h ∈ H, where S is the set of training points.

The proof is outside the syllabus.
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The new generalization theorem places no constraints on the size of H.

Think: What implications can you draw about the Perceptron
algorithm?
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If a set H of classifiers is “more powerful” — namely, having a
greater VC dimension — it is more difficult to learn because a
larger training set is needed.

For the set H of (extended) linear classifiers, the training set size needs
to be Ω(d) to ensure a small generalization error. This becomes a
problem when d is large. In fact, in some situations we may even want to
work with d =∞.

Next, we will introduce another generalization theorem for the linear

classification problem.
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Recall:

Linear classifier: A function h : X → Y where h is defined by a
d-dimensional weight vector w such that

h(x) = 1 if x ·w ≥ 0;

h(x) = −1 otherwise.

S is linearly separable if there is a d-dimensional vector w such
that for each p ∈ S :

w · p > 0 if p has label 1;

w · p < 0 if p has label −1.

The linear classifier that w defines is said to separate S .
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Let h be a linear classifier defined by a d-dimensional vector w .
We say that h is canonical if for every point p ∈ S :

w · p ≥ 1 if p has label 1

w · p ≤ −1 if p has label −1;

and the equality holds on at least one point in S .

Think: If h separates S , it always has a canonical form. Why?
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Margin-Based Generalization Theorem

Theorem: Let H be the set of linear classifiers. Suppose that
the training set S is linearly separable. Fix a value δ satisfying
0 < δ ≤ 1. It holds with probability at least 1− δ that,

errD(h) ≤ 4R · |w |√
|S |

+

√
ln 2
δ + lndlog2(R|w |)e

|S | .

for every canonical h ∈ H, where w is the d-dimensional vector
defining h and

R = max
p∈S
|p|.

The proof is outside the syllabus.

The theorem does not depend on the dimensionality d .
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Margin-Based Generalization Theorem

Why is the theorem “margin-based”?
The margin of the separation plane defined by w equals 1/|w | -(we will
derive this later in the course).

When the training set S is linearly separable, we should find a
separation plane with the largest margin.
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