More Generalization Theorems

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Y Tao

1/16

・ロト ・同ト ・ヨト ・ヨト

Classification

Let $A_1, ..., A_d$ be d attributes, where A_i $(i \in [1, d])$ has domain $dom(A_i) = \mathbb{R}$. Instance space $\mathcal{X} = dom(A_1) \times dom(A_2) \times ... \times dom(A_d) = \mathbb{R}^d$. Label space $\mathcal{Y} = \{-1, 1\}$.

Each instance-label pair (a.k.a. object) is a pair (x, y) in $\mathcal{X} \times \mathcal{Y}$.

 x is a vector; we use x[A_i] to represent the vector's value on A_i (1 ≤ i ≤ d).

Denote by \mathcal{D} a probabilistic distribution over $\mathcal{X} \times \mathcal{Y}$.

-

2/16

(日) (周) (王) (王)

Classification

Goal: Given an object (x, y) drawn from \mathcal{D} , we want to predict its label y from its attribute values $x[A_1], ..., x[A_d]$.

A classifier is a function

$$h: \mathcal{X} \to \mathcal{Y}.$$

Denote by \mathcal{H} a collection of classifiers.

The error of h on \mathcal{D} (i.e., generalization error) is defined as:

$$err_{\mathcal{D}}(h) = \mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h(\mathbf{x})\neq y].$$

We want to learn a classifier $h \in \mathcal{H}$ with small $err_{\mathcal{D}}(h)$ from a training set *S* where each object is drawn independently from \mathcal{D} .

3/16

D > 4 (A) > 4 (B) > 4 (B)

We want to learn a classifier $h \in \mathcal{H}$ with small $err_{\mathcal{D}}(h)$ from a **training set** *S* where each object is drawn independently from \mathcal{D} .

The error of *h* on *S* (i.e., empirical error) is defined as:

$$err_{S}(h) = \frac{\left|(\boldsymbol{x}, y) \in S \mid h(\boldsymbol{x}) \neq y\right|}{|S|}.$$

4/16

Let *P* be a set of points in \mathbb{R}^d . Given a classifier $h \in \mathcal{H}$, we define:

$$P_h = \{p \in P \mid h(p) = 1\}$$

namely, the set of points in P that h classifies as 1.

 \mathcal{H} shatters P if, for any subset $P' \subseteq P$, there exists a classifier $h \in \mathcal{H}$ satisfying $P' = P_h$.

Example: An **extended linear classifier** h is described by a d-dimensional weight vector \boldsymbol{w} and a threshold τ . Given an instance $\boldsymbol{x} \in \mathbb{R}^d$, $h(\boldsymbol{x}) = 1$ if $\boldsymbol{w} \cdot \boldsymbol{x} \geq \tau$, or -1 otherwise. Let \mathcal{H} be the set of all extended linear classifiers.

In 2D space, \mathcal{H} shatters the set P of points shown below.

More Generalization Theorems

Example (cont.): Can you find 4 points in \mathbb{R}^2 that can be shattered by \mathcal{H} ?

The answer is no. Can you prove this?

7/16

Let \mathcal{P} be a subset of \mathcal{X} . The **VC-dimension** of \mathcal{H} on \mathcal{P} is the size of the largest subset $\mathcal{P} \subseteq \mathcal{P}$ that can be shattered by \mathcal{H} .

If the VC-dimension is λ , we write $\operatorname{VC-dim}(\mathcal{P}, \mathcal{H}) = \lambda$.

More Generalization Theorems

8/16

VC Dimension of Extended Linear Classifiers

Theorem: Let \mathcal{H} be the set of extended linear classifiers. VC-dim $(\mathbb{R}^d, \mathcal{H}) = d + 1$.

The proof is outside the syllabus.

Example: We have seen earlier that when d = 2, \mathcal{H} can shatter at least one set of 3 points but cannot shatter any set of 4 points. Hence, VC-dim $(\mathbb{R}^2, \mathcal{H}) = 3$.

Think: Now consider \mathcal{H} as the set of linear classifiers (where the threshold τ is fixed to 0). What can you say about VC-dim $(\mathbb{R}^d, \mathcal{H})$?

9/16

VC-Based Generalization Theorem

The **support set** of \mathcal{D} is the set of points in \mathbb{R}^d that have a positive probability to be drawn according to \mathcal{D} .

Theorem: Let \mathcal{P} be the support set of \mathcal{D} and set $\lambda = \text{VC-dim}(\mathcal{P}, \mathcal{H})$. Fix a value δ satisfying $0 < \delta \leq 1$. It holds with probability at least $1 - \delta$ that

$$err_{\mathcal{D}}(h) \leq err_{\mathcal{S}}(h) + \sqrt{rac{8\lnrac{4}{\delta} + 8\lambda\cdot\lnrac{2e|S|}{\lambda}}{|S|}}$$

for every $h \in \mathcal{H}$, where *S* is the set of training points.

The proof is outside the syllabus.

The new generalization theorem places **no constraints** on the size of \mathcal{H} .

Think: What implications can you draw about the Perceptron algorithm?

11/16

4 回 > 4 回 > 4

If a set \mathcal{H} of classifiers is "more powerful" — namely, having a greater VC dimension — it is more difficult to learn because a larger training set is needed.

For the set \mathcal{H} of (extended) linear classifiers, the training set size needs to be $\Omega(d)$ to ensure a small generalization error. This becomes a problem when d is large. In fact, in some situations we may even want to work with $d = \infty$.

Next, we will introduce another generalization theorem for the **linear** classification problem.

Recall:

Linear classifier: A function $h : \mathcal{X} \to \mathcal{Y}$ where h is defined by a *d*-dimensional weight vector w such that

•
$$h(\mathbf{x}) = 1$$
 if $\mathbf{x} \cdot \mathbf{w} \ge 0$;

•
$$h(\mathbf{x}) = -1$$
 otherwise.

S is **linearly separable** if there is a *d*-dimensional vector w such that for each $p \in S$:

- *w* · *p* > 0 if *p* has label 1;
- $\boldsymbol{w} \cdot \boldsymbol{p} < 0$ if \boldsymbol{p} has label -1.

The linear classifier that \boldsymbol{w} defines is said to separate S.

13/16

・ 同 ト ・ 三 ト ・ 三

Let *h* be a linear classifier defined by a *d*-dimensional vector *w*. We say that *h* is **canonical** if for every point $p \in S$:

• $\boldsymbol{w} \cdot \boldsymbol{p} \geq 1$ if \boldsymbol{p} has label 1

• $\boldsymbol{w} \cdot \boldsymbol{p} \leq -1$ if \boldsymbol{p} has label -1;

and the equality holds on at least one point in S.

Think: If *h* separates *S*, it always has a canonical form. Why?

Margin-Based Generalization Theorem

Theorem: Let \mathcal{H} be the set of linear classifiers. Suppose that the training set S is **linearly separable**. Fix a value δ satisfying $0 < \delta \leq 1$. It holds with probability at least $1 - \delta$ that,

$$\operatorname{err}_D(h) \leq rac{4R \cdot |oldsymbol{w}|}{\sqrt{|S|}} + \sqrt{rac{\ln rac{2}{\delta} + \ln \lceil \log_2(R|oldsymbol{w}|) \rceil}{|S|}}.$$

for **every canonical** $h \in \mathcal{H}$, where w is the *d*-dimensional vector defining h and

$$R = \max_{\boldsymbol{p} \in S} |\boldsymbol{p}|.$$

The proof is outside the syllabus.

The theorem does not depend on the dimensionality d.

15/16

・ 同 ト ・ ヨ ト ・ ヨ ト

Margin-Based Generalization Theorem

Why is the theorem "margin-based"? The margin of the separation plane defined by \boldsymbol{w} equals $1/|\boldsymbol{w}|$ -(we will derive this later in the course).

When the training set S is linearly separable, we should find a separation plane with the largest margin.