Linear Classification: The Kernel Method

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Y Tao [Linear Classification: The Kernel Method](#page-21-0)

Ξ

 QQ

Recall the core problem of linear classification:

Let P be a set of points in \mathbb{R}^d , each of which carries a label 1 or -1 . The goal of the *linear classification problem* is to determine whether there is a d -dimensional plane

$$
x_1 \cdot c_1 + x_2 \cdot c_2 + \ldots + x_d \cdot c_d = 0
$$

which separates the points in P of the two labels.

If the plane exists, then P is said to be **linearly separable**. Otherwise, P is linearly non-separable.

Why the Separable Case Is Important?

So far, we have not paid much attention to non-separable datasets. All the techniques we have learned are designed for the scenario where P is linearly separable.

This lecture will give a good reason for this. We will learn a technique called the kernel method — that maps a dataset into another space of higher dimensionality. By applying the method appropriately, we can always guarantee linear separability.

イロト イ団 トイヨトイ

3/22

Motivation

Consider the non-separable circle dataset P below, where a point p has label 1 if $(p[1])^2 + (p[2])^2 \le 1$, or -1 otherwise.

Let us map each point $p \in P$ to a point p' in another space where $\rho'[1]=(\rho[1])^2$ and $\rho'[2]=0$ $(p[2])^2$. This gives a new dataset P^{\prime} .

Clearly the points in P' of the two labels are separated by a linear plane $p'[1] + p'[2] = 1$.

Motivation

The left figure below is another non-separable dataset P (known as the XOR dataset).

The right figure shows the 4 points after the transformation from a 2D point (x, y) to a 3D point (x, y, xy) . The new dataset is linearly separable.

5/22

 QQ

Theorem: Let P be an arbitrary set of n points in 1D space, each of which has label 1 or -1 . If we map each point $x \in P$ to an *n*-dimensional point $(1, x, x^2, ..., x^{n-1})$, the set of points obtained is always linearly separable.

Think: How do you apply the result in 2D? (Hint: just take the x-coordinates; if there are duplicates, rotate the space).

We will prove the theorem in the next two slides.

Y Tao [Linear Classification: The Kernel Method](#page-0-0)

 $AB + AB + 4$

Proof: Denote the points in P as $p_1, p_2, ..., p_n$ in ascending order. We will consider that n is an odd number (the opposite case left to you). Without loss of generality, assume that p_i has label −1 when $i \in [1, n]$ is an odd integer, and 1 otherwise.

Here, the labels of the points are "interleaving" (i.e., $-1, 1, -1, 1, \ldots$). After you have understood the proof, think how to extend it a non-interleaving P.

The following shows an example where $n = 5$, and white and black points have labels -1 and 1, respectively.

 $A \oplus B$ $A \oplus B$ $B \oplus A$

Proof (cont.): Between p_i and p_{i+1} $(1 \leq i \leq n-1)$, pick an arbitrary point q_i . The figure below shows an example:

Now consider the following polynomial function

$$
f(x) = -(x-q_1)(x-q_2)...(x-q_{n-1}).
$$

It must hold that: for every label-(−1) point p , $f(p) < 0$, while for every label-1 point, $f(p) > 0$.

The figure below shows what happens when $n = 5$:

Proof (cont.): Function $f(x)$ can be expanded into the following form:

$$
f(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_{n-1} x^{n-1}.
$$

Therefore, if we convert each point $x \in P$ to a point $(1, x, x^2, ..., x^{n-1})$, the resulting set of n-dimensional points must be separable by a plane passing the origin (of the *n*-dimensional space).

イロメ イタメ イヨメ イヨメ

9/22

Issues

The conversion explained in the proof produces a new space of dimensionality $d' = n$. This motivates us to consider two issues?

- **Issue 1:** How to find a conversion with a smaller d ?
- Issue 2: When d' is large, computation in the converted space can be very expensive (in fact, even enumerating all the coordinates of point takes $\Theta(d')$ time). Is it possible improve the efficiency?

 $A \oplus B$ and $A \oplus B$ and $A \oplus B$

A <mark>kernel function</mark> K is a function from $\mathbb{R}^d \times \mathbb{R}^d$ to $\mathbb R$ with the following property: there is a mapping $\phi:\mathbb{R}^d\rightarrow\mathbb{R}^{d'}$ such that, given any two points $\boldsymbol{\mathsf{p}},\boldsymbol{\mathsf{q}}\in\mathbb{R}^d$, $\mathcal{K}(\boldsymbol{\mathsf{p}},\boldsymbol{\mathsf{q}})$ equals the dot product of $\phi(p)$ and $\phi(q)$.

We will refer to the space $\mathbb{R}^{d'}$ (where $\phi(p)$ is) as the <mark>kernel space</mark>.

We will see two common kernel functions next. Henceforth, a point $\mathcal{p} = (\mathcal{p}[1], \mathcal{p}[2], ..., \mathcal{p}[d])$ in \mathbb{R}^d will interchangeably be regarded as a vector p . For example, the dot product of two points p, q — written as $\bm{p}\cdot\bm{q}$ — equals $\sum_{i=1}^{d} p[i]q[i].$

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

Polynomial Kernel

Let p and q be two points in \mathbb{R}^d . A polynomial kernel has the form:

$$
K(\boldsymbol{p},\boldsymbol{q}) = (\boldsymbol{p}\cdot\boldsymbol{q}+1)^c
$$

for some integer degree $c \geq 1$.

重

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

12/22

 QQ

Example

Consider that $d = 2$ and $c = 2$. We can expand the Kernel function as:

$$
\begin{array}{rcl}\nK(\mathbf{p},\mathbf{q}) & = & (\mathbf{p} \cdot \mathbf{q} + 1)^2 = (p[1]q[1] + p[2]q[2] + 1)^2 \\
& = & 1 + (p[1])^2(q[1])^2 + (p[2])^2(q[2])^2 + \\
& 2(p[1]p[2])(q[1]q[2]) + 2p[1]q[1] + 2p[2]q[2].\n\end{array}
$$

We can regard the above as the dot product of $\phi(p)$ and $\phi(q)$, where $\phi(p)$ is a 6 dimensional point:

$$
\phi(p) = (1, p[1]^2, p[2]^2, \sqrt{2}p[1]p[2], \sqrt{2}p[1], \sqrt{2}p[2]).
$$

In other words, the converted space has a dimensionality of $d' = 6$.

In general, a polynomial kernel with degree c converts ddimensional space to $\binom{d+c}{c}$ dimensional space.

Gaussian Kernel (a.k.a. RBF Kernel)

Let ρ and q be two points in \mathbb{R}^d . A Gaussian kernel has the form:

$$
K(\boldsymbol{p},\boldsymbol{q}) = \exp\left(-\frac{dist(\boldsymbol{p},\boldsymbol{q})^2}{2\sigma^2}\right)
$$

for a real value $\sigma > 0$ called the **bandwidth**. Note that $dist(p, q)$ is the Euclidean distance between p and q , namely, $dist(\bm{p}, \bm{q})^2 = \sum_{i=1}^d (p[i] - q[i])^2$.

In general, a Gaussian kernel converts d-dimensional space to another space with infinite dimensionality! We will illustrate this in the next slide for $d = 1$.

 \overline{AB} \overline{B} \overline{B} \overline{B} \overline{B} \overline{B} \overline{B} \overline{B} \overline{B}

Gaussian Kernel (a.k.a. RBF Kernel)

We know from Taylor expansion $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + ...$ When $d=1$, $\mathit{dist}(p,q)^2=p^2-2pq+q^2.$ Hence:

$$
\exp\left(-\frac{dist(p, q)^2}{2\sigma^2}\right) = \exp\left(-\frac{p^2 - 2pq + q^2}{2\sigma^2}\right) =
$$
\n
$$
\exp\left(-\frac{p^2 + q^2}{2\sigma^2}\right) \exp\left(\frac{pq}{\sigma^2}\right) = \frac{1}{e^{\frac{p^2}{2\sigma^2}} e^{\frac{q^2}{2\sigma^2}}} \exp\left(\frac{pq}{\sigma^2}\right)
$$
\n
$$
= \frac{1}{e^{\frac{p^2}{2\sigma^2}}} \frac{1}{e^{\frac{q^2}{2\sigma^2}}} \left(1 + \frac{pq}{\sigma^2} + \frac{(p/\sigma)^2 (q/\sigma)^2}{2!} + \frac{(p/\sigma)^3 (q/\sigma)^3}{3!} + \dots\right)
$$

It is now clear that $\phi(p)$ has the following coordinates:

$$
\left(\frac{1}{e^{\frac{p^2}{2\sigma^2}}}, \frac{p/\sigma}{e^{\frac{p^2}{2\sigma^2}}}, \frac{(p/\sigma)^2}{\sqrt{2!} \cdot e^{\frac{p^2}{2\sigma^2}}}, \frac{(p/\sigma)^3}{\sqrt{3!} \cdot e^{\frac{p^2}{2\sigma^2}}}, \dots\right)
$$

Y Tao [Linear Classification: The Kernel Method](#page-0-0) Linear Classification: The Kernel Method

ヨメ イヨメ

15/22

Gaussian Kernel (a.k.a. RBF Kernel)

Theorem: Regardless of the choice of σ , a Gaussian kernel is capable of separating any finite set of points.

The proof will be left as an exercise (with hints).

Y Tao [Linear Classification: The Kernel Method](#page-0-0)

A BAYA B

16/22

Finding a Separation Plane in the Converted Space

A Kernel function $K(.,.)$ allows us to convert the original d-dimensional dataset P into another d'-dimensional dataset $P' = \{ \phi(p) \mid p \in P \}$ where typically $d' \gg d$. But how do we find a separation plane in the kernel space $\mathbb{R}^{d'}$?

One (naive) idea is to materialize P' , but this requires figuring out the details of $\phi(.)$. As shown earlier, this is either cumbersome (e.g., polynomial kernel) or impossible (e.g., Gaussian kernel).

It turns out that we can achieve the purpose without working in the d'-dimensional space at all. Our weapon is, once again, Perceptron!

マーター マーティング

Recall:

Perceptron

The algorithm starts with $w = (0, 0, ..., 0)$, and then runs in iterations.

In each iteration, it checks whether any point in $p \in P$ violates our requirement according to w . If so, the algorithm adjusts w as follows:

- If p has label 1, then $w \leftarrow w + p$.
- If p has label -1 , then $w \leftarrow w p$.

The algorithm finishes if the iteration finds all points of P on the right side of the plane.

イロメ イタメ イラメイラメ

18/22

In the converted space $\mathbb{R}^{d'}$, it should be modified as:

Perceptron

The algorithm starts with $\textbf{\textit{w}}=(0,0,...,0)$, and then runs in iterations.

 ${d'}$ In each iteration, it simply checks whether any point in $\phi(p) \in P'$ $\overline{}$ violates our requirement according to w . If so, the algorithm adjusts w as follows:

- If $\phi(p)$ has label 1, then $w \leftarrow w + \phi(p)$.
- If $\phi(p)$ has label -1 , then $w \leftarrow w \phi(p)$.

The algorithm finishes if the iteration finds all points of P' on the right side of the plane.

Next we will show how to implement the algorithm using the Kernel function $K(.,.).$

イロト イ母 トイラト イラト

Perceptron

For point $p \in P$, denote by t_p the number of times that p has been used to adjust w ($t_p = 0$ if p has never been used before). Let P_{-1} (or P_1) be the set of label- (-1) (or label-1, resp.) points in P.

Hence, the current w is:

$$
\mathbf{w} = \sum_{p \in P_1} t_p \phi(p) - \sum_{p \in P_{-1}} t_p \phi(p).
$$

化重氮化重氮

20/22

Perceptron

The key step to implement is this: given an arbitrary point $q \in \mathbb{R}^d$, we want to compute the dot product between **w** and $\phi(q)$ in the d' -dimensional space. Using the Kernel function $K(.,.),$ we have:

$$
\mathbf{w} \cdot \phi(q) = \left(\sum_{p \in P_1} t_p \phi(p) - \sum_{p \in P_{-1}} t_p \phi(p) \right) \phi(q)
$$

=
$$
\left(\sum_{p \in P_1} t_p(\phi(p) \cdot \phi(q)) \right) - \left(\sum_{p \in P_{-1}} t_p(\phi(p) \cdot \phi(q)) \right)
$$

=
$$
\sum_{p \in P_1} t_p \cdot K(p, q) - \sum_{p \in P_{-1}} t_p \cdot K(p, q).
$$

Therefore, by maintaining t_p for every $p \in P$, we never need to compute any dot-products in the converted d' -dimensional space.

イロト イ押 トイラト イラトー

21/22

We finish this lecture with a question for you:

Think: How to apply the margin-based generalization theorem on the set P' of points obtained by the kernel method?

 $AB + 4B + 4$

22/22