CMSC5724: Exercise List 6

Problem 1. Prove the theorem on Slide 6 of the lecture notes on the kernel method without the interleaving assumption.

Answer: Sort the input P and divide it into maximal subsets such that the points in each subset are consecutive and share the same label. Denote the subsets as $S_1, S_2, ..., S_l$ in ascending order (for some $l \ge 1$). For example, suppose P has points $p_1, p_2, ..., p_{10}$ where p_2, p_3 , and p_4 have label 1, and the other points label −1. Then, $l = 3$; and $S_1 = \{p_1\}$, $S_2 = \{p_2, p_3, p_4\}$, and $S_3 = \{p_5, p_6, ..., p_{10}\}$.

We will assume that the points in S_1 have label -1 and that l is an odd number. Find a point q_i for each $i \in [1, l-1]$ such that q_i is larger than the points in S_i but smaller than those in S_{i+1} . Construct a function:

$$
f(x) = -(x - q_1)(x - q_2)...(x - q_{l-1}).
$$
\n(1)

For an odd i, $f(p) < 0$ for all $p \in S_i$. For an even i, $f(p) > 0$ for all $p \in S_i$. The rest of the proof proceeds as discussed in the lecture.

Problem 2. Consider the kernel function $K(p,q) = (p \cdot q + 1)^3$, where $p = (p[1], p[2])$ and $q = (q[1], q[2])$ are 2-dimensional vectors. Recall that there is a mapping function ϕ from \mathbb{R}^2 to \mathbb{R}^d for some integer d such that $K(p,q)$ equals the dot product of $\phi(p)$ and $\phi(q)$. Give the details of ϕ .

Answer: Rewrite K as dot product form.

$$
K(p,q) = (p[1]q[1] + p[2]q[2] + 1)^3
$$

\n
$$
= p[1]^3q[1]^3 + p[2]^3q[2]^3 + 1 + 3p[1]q[1]p[2]^2q[2]^2
$$

\n
$$
+ 3p[1]^2q[1]^2p[2]q[2] + 3p[1]q[1] + 3p[1]^2q[1]^2 + 3p[2]q[2] + 3p[2]^2q[2]^2 + 6p[1]q[1]p[2]q[2]
$$

\n
$$
= (p[1]^3, p[2]^3, 1, \sqrt{3}p[1]p[2]^2, \sqrt{3}p[1]^2p[2], \sqrt{3}p[1], \sqrt{3}p[2], \sqrt{3}p[1]^2, \sqrt{3}p[2]^2, \sqrt{6}p[1]p[2])
$$

\n
$$
\cdot (q[1]^3, q[2]^3, 1, \sqrt{3}q[1]q[2]^2, \sqrt{3}q[1]^2q[2], \sqrt{3}q[1], \sqrt{3}q[2], \sqrt{3}q[1]^2, \sqrt{3}q[2]^2, \sqrt{6}q[1]q[2])
$$

Therefore, $\phi(x) = (x[1]^3, x[2]^3, 1,$ $\sqrt{3}x[1]x[2]^2,$ $\sqrt{3}x[1]^2x[2], \sqrt{2}$ $3x[1],$ √ $3x[2],$ $\sqrt{3}x[1]^2,$ $\sqrt{3}x[2]^2$, √ $6x[1]x[2]$.

Problem 3. Consider a set P of 2D points each labeled either -1 or 1. It is known that the points of the two labels can be linearly separated after applying the Kernel function $K(p,q) = (\mathbf{p} \cdot \mathbf{q} + 1)^2$. Prove that they can also be linearly separated by applying the kernel function $K'(p, q) = (2p \cdot q + 3)^2$.

Answer: Using the method explained in Problem 1, we can find the mapping functions ϕ and ϕ' for K and K' , respectively:

$$
\phi(p) = p[1]^2 + p[2]^2 + 1 + \sqrt{2}p[1] + \sqrt{2}p[2] + \sqrt{2}p[1]p[2]
$$

$$
\phi'(p) = 2p[1]^2 + 2p[2]^2 + 3 + 2\sqrt{3}p[1] + 2\sqrt{3}p[2] + 2\sqrt{3}p[1]p[2].
$$

Let π be the plane that separates the points under ϕ . If $\mathbf{w} \cdot \phi(x) = 0$ is the equation for π , then (i) for every point p of label 1, $\mathbf{w} \cdot \phi(p) > 0$, and (ii) for every point p of label -1 , $\mathbf{w} \cdot \phi(p) < 0$. non-separa

Set $\textbf{\textit{w}}' = (\frac{\textit{w}[1]}{2}, \frac{\textit{w}[2]}{2})$ $\frac{w[2]}{2},\frac{\boldsymbol{w}[3]}{3}$ $\frac{[3]}{3}, \frac{\mathbf{w}[4]}{\sqrt{6}}, \frac{\mathbf{w}[6]}{\sqrt{6}})$. Let π' be the plane given by the equation $\mathbf{w}' \cdot \phi(x) = 0$. We claim that π' also separates the points. Indeed, for every point p of label 1, we have:

$$
\mathbf{w}' \cdot \phi'(p)
$$
\n
$$
= \frac{\mathbf{w}[1]}{2} \cdot 2p[1]^2 + \frac{\mathbf{w}[2]}{2} \cdot 2p[2]^2 + \frac{\mathbf{w}[3]}{3} \cdot 3 + \frac{\mathbf{w}[4]}{\sqrt{6}} \cdot 2\sqrt{3}p[1] + \frac{\mathbf{w}[5]}{\sqrt{6}} \cdot 2\sqrt{3}p[2] + \frac{\mathbf{w}[6]}{\sqrt{6}} \cdot 2\sqrt{3}p[1]p[2]
$$
\n
$$
= \mathbf{w}[1] \cdot p[1]^2 + \mathbf{w}[2] \cdot p[2]^2 + \mathbf{w}[3] + \sqrt{2}\mathbf{w}[4] \cdot p[1] + \sqrt{2}\mathbf{w}[5] \cdot p[2] + \sqrt{2}\mathbf{w}[6] \cdot p[1]p[2]
$$
\n
$$
= \mathbf{w} \cdot \phi(x) > 0.
$$

Likewise, we can prove that, for every point p of label -1 , it holds that $\mathbf{w}' \cdot \phi'(p) = \mathbf{w} \cdot \phi(p) < 0$.

Problem 4. Consider a set P of 2D points that has three label-1 points $p_1(-2, -2)$, $p_2(1, 1)$, $p_3(3, 3)$, and two label-(−1) points $q_1(-2, 2), q_2(2, -2)$. Answer the following questions:

- Use Perceptron to find a separation plane π using the Kernel function $K(x, y) = (x \cdot y + 1)^2$.
- According to π , what is the label of point $(2, 2)$?

Answer: Initially, let $w_0 = 0$. Perceptron runs as follows:

Iteration 1. Since $\mathbf{w}_0 \cdot \phi(p_1) = 0$, we set $\mathbf{w}_1 = \mathbf{w}_0 + \phi(p_1) = \phi(p_1)$.

Iteration 2. Since $w_1 \cdot \phi(q_1) = K(p_1, q_1) = 1 > 0$, we set $w_2 = w_1 - \phi(q_1) = \phi(p_1) - \phi(q_1)$.

Iteration 3. There are no more violations for w_2 . So we have found a separation plane $w_2 \cdot \phi(x) = 0$ such that (i) $w_2 \cdot \phi(x) > 0$ for every label-1 point p, and (ii) $w_2 \cdot \phi(x) < 0$ for every label-(-1) point p.

Now consider the point $r = (2, 2)$. As $w_2 \cdot \phi(r) = K(p_1, r) - K(q_1, r) = 48 > 0$, we classify r as label 1.

Problem 5. Same settings as in Problem 3. Calculate the distance from $\phi(p_1)$ to the separation plane you find in the feature space.

Answer: We know from the solution of Problem 3 that the weight vector of the separation plane (in the feature space) is $\mathbf{w} = \phi(p_1) - \phi(q_1)$.

The distance from $\phi(p_1)$ to this plane equals

$$
\frac{\mathbf{w} \cdot \phi(p_1)}{|\mathbf{w}|} = \frac{\mathbf{w} \cdot \phi(p_1)}{\sqrt{\mathbf{w} \cdot \mathbf{w}}}
$$
\n
$$
= \frac{(\phi(p_1) - \phi(q_1)) \cdot \phi(p_1)}{\sqrt{(\phi(p_1) - \phi(q_1)) \cdot (\phi(p_1) - \phi(q_1))}}
$$
\n
$$
= \frac{\phi(p_1) \cdot \phi(p_1) - \phi(p_1) \cdot \phi(q_1)}{\sqrt{\phi(p_1) \cdot \phi(p_1) - 2\phi(p_1) \cdot \phi(q_1) + \phi(q_1) \cdot \phi(q_1)}}
$$
\n
$$
= \frac{K(p_1, p_1) - K(p_1, q_1)}{\sqrt{K(p_1, p_1) - 2K(p_1, q_1) + K(q_1, q_1)}}
$$
\n
$$
= \frac{81 - 1}{\sqrt{81 - 2 \times 1 + 81}}
$$
\n
$$
= 80/\sqrt{160}.
$$

Problem 6. Let P be a set of points in \mathbb{R}^d . Prove: the Gaussian kernel produces a kernel space where every point $p \in P$ is mapped to a point $\phi(p)$ satisfying $|\phi(p)| = 1$, namely, $\phi(p)$ is on the surface of an infinite-dimensional sphere.

Answer: A Gaussian kernel has the form $K(p,q) = \exp(-\frac{dist(p,q)^2}{2\sigma^2})$ where p and q are points in \mathbb{R}^d . in the kernel space, The distance of $\phi(p)$ to the origin is $\sqrt{\phi(p) \cdot \phi(p)}$, which equals

$$
\sqrt{K(p,p)} = \sqrt{\exp(-\frac{dist(p,p)^2}{2\sigma^2})} = \sqrt{\exp(0)} = 1.
$$

Problem 7. For any a d-dimensional sphere centered at the origin of \mathbb{R}^d , we know that any set of $d+1$ points on the sphere's surface can be shattered by the set of linear classifiers. Use this fact to prove that any finite set P of points in \mathbb{R}^d can be linearly separated in the kernel space produced by the Gaussian kernel. (Hint: use the conclusion of Problem 6 and use the fact that the Gaussian kernel produces a kernel space of infinite dimensionality.)

Answer: By the given fact that any $d+1$ points on a sphere's surface can be shattered, we know:

Fact 1: For any d-dimensional sphere centered at the origin of \mathbb{R}^d and any set S of n points on the sphere such that $d \geq n-1$, S can be shattered by the set of d-dimensional linear classifiers.

By the conclusion of Problem 6, every point $p \in P$ is mapped into a point $\phi(p)$ on the surface of an infinite-dimensional sphere centering at the origin. The claim in Problem 7 then follows directly from Fact 1 and Problem 6.