
1/30

Finding Strongly Connected Components

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Finding Strongly Connected Components

2/30

Recall that we have applied DFS to solve two non-trivial problems: cycle
detection and topological sort. Today we will see yet another interesting
problem that can be elegantly solved by this remarkable algorithm:
finding strongly connected components.

Yufei Tao Finding Strongly Connected Components

3/30

“Strongly Connected”

Let G = (V ,E) be a directed graph.
Two distinct vertices u, v ∈ V are strongly connected if there is a path
from u to v , and also a path from v to u.

Example:

a b

c

d

e

f g

h

i

j

k
l

d and l are strongly connected; so are a and c .
But a and d are not.

Yufei Tao Finding Strongly Connected Components

4/30

Strongly Connected Equivalent Classes

A strongly connected equivalent class (SCEC) of G is a subset S of V
such that

Any two distinct vertices u, v ∈ S are strongly connected.

S is maximal in the sense that we cannot put any more vertex into
S without violating the above property.

Yufei Tao Finding Strongly Connected Components

5/30

Example

a b

c

d

e

f g

h

i

j

k
l

{a, b, c} is an SCEC.

{a, b, c , d} is not an SCEC.

{d , e, f , k, l} is not an SCEC (because we can still add vertex g).

{e, d , f , k , l , g} is an SCEC.

Yufei Tao Finding Strongly Connected Components

6/30

SCECs are Disjoint

Theorem: Suppose that S1 and S2 are two different SCECs of G .
Then, S1 ∩S2 = ∅.

Proof: Assume that there is a vertex v in both S1 and S2. Then, for any
vertex u1 ∈ S1 and any vertex u2 ∈ S2:

There is a path from u1 to u2: we can first go from u1 to v within
S1, and then from v to u2 within S2.

Likewise, there is also a path from u2 to u1.

Hence, neither S1 nor S2 is maximal, contradicting the fact that they are

SCECs.

Yufei Tao Finding Strongly Connected Components

7/30

The Strongly Connected Problem Problem

Problem: Given a directed graph G = (V ,E), we want to divide
V into disjoint subsets, each of which is an SCEC.

Example:

a b

c

d

e

f g

h

i

j

k
l

We should output: {a, b, c}, {d , e, f , g , k , l}, {h, i}, and {j}.

Yufei Tao Finding Strongly Connected Components

8/30

Algorithm

Step 1: Obtain the reversed graph GR by reversing the directions of all
the edges in G .

Example:

a b

c

d

e

f g

h

i

j

k
l a b

c

d

e

f g

h

i

j

k
l

Input graph Reversed graph

Yufei Tao Finding Strongly Connected Components

9/30

Algorithm

Step 2: Perform DFS on GR , and obtain the sequence LR that the
vertices in GR turn black (i.e., whenever a vertex is popped out of the
stack, append it to LR).

Obtain L as the reverse order of LR .

Yufei Tao Finding Strongly Connected Components

10/30

Example

Reverse graph GR :

a b

c

d

e

f g

h

i

j

k
l

We may perform DFS starting from any vertex. When a restart is needed,
we may do so from any vertex that is still white. The following is a
possible order that the vertices are discovered: f , l , k , e, j , d , g , i , h, a, b, c .

The corresponding turn-black sequence is
LR = (k, l , j , h, i , g , d , e, f , c , b, a).

Hence, L = (a, b, c , f , e, d , g , i , h, j , k , l).

Yufei Tao Finding Strongly Connected Components

11/30

Algorithm

Step 3: Perform DFS on the original graph G by obeying the following
rules:

Rule 1: Start the DFS at the first vertex of L.

Rule 2: Whenever a restart is needed, start from the first vertex of
L that is still white.

Output the vertices in each DFS-tree as an SCEC.

Yufei Tao Finding Strongly Connected Components

12/30

Example

From the last step, we have L = (a, b, c , f , e, d , g , i , h, j , k, l).
The original graph G :

a b

c

d

e

f g

h

i

j

k
l

Start DFS from a, which finishes after discovering {a, c , b}.
Restart from f , which finishes after discovering {f , k , l , d , e, g}
Restart from i , which finishes after discovering {i , h}
Restart from j , which finishes after discovering {j}

The DFS returns 4 DFS-trees, whose vertex sets are shown as above.

Each vertex set constitutes an SCEC.

Yufei Tao Finding Strongly Connected Components

13/30

Time Analysis

The overall execution time is O(|V |+ |E |).

Yufei Tao Finding Strongly Connected Components

14/30

Next, we will prove that the algorithm is correct.

The proof is based on the white path theorem on DFS. This is
an important theorem which should have been taught in the “data
structure” course.
If you need to review this theorem and/or its proof, you can refer
to the course homepage of Prof. Yufei Tao’s offering of the course
CSCI2100: www.cse.cuhk.edu.hk/∼taoyf/course/2100/18-fall.

Yufei Tao Finding Strongly Connected Components

15/30

SCEC Graph

Let G be the input directed graph, with SCECs S1,S2, ...,St for some
t ≥ 1.

Let us define a SCEC graph GEC as follows:

Each vertex in GEC is a distinct SCEC in G .

Consider two vertices (a.k.a. SCECs) Si and Sj (1 ≤ i , j ≤ t). GEC

has an edge from Si to Sj if and only if

i 6= j , and
There is a path in G from a vertex in Si to a vertex in Sj .

Yufei Tao Finding Strongly Connected Components

16/30

Example

SCC Graph

S1 S2 S3

S4

a b

c

d

e

f g

h

i

j

S1

S2

S3

S4

k
l

Yufei Tao Finding Strongly Connected Components

17/30

SCEC Graph

Lemma: GEC is a DAG.

Proof: Suppose that there is a cycle in GEC , which must involve at least
2 SCECs—say Si ,Sj—as no vertex in GEC has an edge to itself. Then,
any vertex in Si is reachable from any vertex in Sj , and vice versa. This
violates the fact that Si ,Sj are SCECs (violating maximality).

Yufei Tao Finding Strongly Connected Components

18/30

SCEC Graph

Define an SCEC as a sink SCEC if it has no outgoing edge in GEC .

Lemma: There must be at least one sink SCEC in GEC .

Proof: Since GEC is a DAG, it admits a topological order. The last
vertex of the topological order cannot have any outgoing edges.

Yufei Tao Finding Strongly Connected Components

19/30

Example

SCC Graph

S1 S2 S3

S4

a b

c

d

e

f g

h

i

j

S1

S2

S3

S4

k
l

S1 is a sink vertex.

Yufei Tao Finding Strongly Connected Components

20/30

DFS in a Sink SCEC

Lemma: Let S be a sink SCEC of GEC . Suppose that we perform a
DFS starting from any vertex in S . Then the first DFS-tree output
must include all and only the vertices in S .

Proof: Let v ∈ S be the starting vertex of DFS. By the white path
theorem of DFS, the DFS-tree must include all the vertices that v can
reach. These are exactly the vertices in S .

Yufei Tao Finding Strongly Connected Components

21/30

Example

SCC Graph

S1 S2 S3

S4

a b

c

d

e

f g

h

i

j

S1

S2

S3

S4

k
l

Performing DFS from any vertex in S1 will discover S1 as the first SCEC.

Yufei Tao Finding Strongly Connected Components

22/30

Finding SCECs—The Strategy

The previous lemma suggests the following strategy for finding all the
SCECs:

1. Performing DFS from any vertex in a sink SCEC S .

2. Delete all the vertices of S from G , as well as their edges.

3. Accordingly, delete S from GEC , as well as its edges.

4. Repeat from Step 1, until G is empty.

Yufei Tao Finding Strongly Connected Components

23/30

Example

After deleting S1, we have:

SCC Graph

S2 S3

S4

d

e

f g

h

i

j

S2

S3

S4

k
l

Now, S2 becomes the sink SCEC. Performing DFS from any vertex in S2
discovers S2 as the second SCEC.

Yufei Tao Finding Strongly Connected Components

24/30

Example

After deleting S2, we have:

SCC Graph

S3

S4

h

i

j

S3

S4

Now, S3 becomes the sink SCEC. Performing DFS from any vertex in S3
discovers S3 as the third SCEC.

Yufei Tao Finding Strongly Connected Components

25/30

Example

After deleting S3, we have:

SCC Graph

S4

j

S4

Now, S4 becomes the sink SCEC. Performing DFS from any vertex in S4
discovers S4 as the last SCEC.

Yufei Tao Finding Strongly Connected Components

26/30

A Property of the Ordering L

Next, we will show that this is exactly the strategy taken by our
algorithm. In particular, we resort to the ordering L to correctly
identify the sequence of sink SCECs!

Lemma: Let S1,S2 be SCECs such that there is a path from S1
to S2 in GEC . In the ordering of L, the earliest vertex in S2 must
come before the earliest vertex in S1.

Proof: Let X1,X2, ...,Xt be a path on GEC such that X1 = S1 and
Xt = S2. Consider the DFS performed on the reversed graph GR , Let v
be the first vertex discovered among all the vertices of X1 ∪ X2 ∪ ... ∪ Xt

in this DFS.

Yufei Tao Finding Strongly Connected Components

27/30

By the white path theorem, at the moment when v is discovered by DFS,
there is a white path in GR from v to all the vertices in X1. In other
words, all the vertices in X1 must turn black no later than v in the DFS.

Let u be the vertex in S2 that turns black the last. It follows from the

previous paragraph that all the vertices in X1 must turn black before u.

Therefore, u is behind all the vertices of S1 in LR , which indicates that u

is before all the vertices of S1 in L.

Yufei Tao Finding Strongly Connected Components

28/30

Example

SCC Graph

S1 S2 S3

S4

a b

c

d

e

f g

h

i

j

S1

S2

S3

S4

k
l

Recall that we obtained earlier L = (a, b, c , f , e, d , g , i , h, j , k, l). The red

vertices a, f , i , j are, respectively, the earliest vertex in L of S1,S2,S3, and

S4.

Yufei Tao Finding Strongly Connected Components

29/30

This essentially completes the proof of the correctness of our SCEC
algorithm.

Did we delete any vertices from G? In fact, we did, as far as DFS
is concerned. To see this, recall that, after a vertex is popped out
of the stack, DFS colors it black. These vertices are never touched
again, and hence, effectively deleted.

Yufei Tao Finding Strongly Connected Components

