
1/20

Dynamic Programming 2: Optimal BST

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Programming 2: Optimal BST



2/20

Designing a dynamic programming algorithm, in general, requires
discovering a recursive structure of the underlying problem. Next,
we will illustrate this through the optimal BST problem.

Yufei Tao Dynamic Programming 2: Optimal BST



3/20

Review: Binary Search Tree (BST)

20

10 40

30

Each node stores a key.

The key of an internal node u is larger than any key in its left
subtree, and smaller than any key in its right subtree.

Yufei Tao Dynamic Programming 2: Optimal BST



4/20

Review: Binary Search Tree (BST)

20

10 40

30

The level of a node u in a BST T — denoted as levelT (u) —
equals the number of edges on the path from the root to u.

The level of the root is 0.

The depth of a tree is the maximum level of the nodes in the tree.

Searching for a node u incurs cost proportional to 1 + levelT (u).

How many nodes do you need to access to search for node 10,
20, 30, and 40, respectively?

Yufei Tao Dynamic Programming 2: Optimal BST



5/20

Let S be a set of n integers.
We know that a balanced BST on S has depth O(log n).
This is good if we assume that all the integers in S are searched with
equal probabilities.

In practice, not all keys are equally important: some are searched more
often than others. This gives rise to an interesting question:

If we know the search frequencies of the integers in S , how to build
a better BST to minimize the average search cost?

Yufei Tao Dynamic Programming 2: Optimal BST



6/20

Example:

20

10 40

30

Suppose that we know the frequencies of 10, 20, 30, and 40 are
40%, 15%, 35%, and 10%, respectively. Then, the average cost of
searching for a key in the BST equals:

freq(10) · cost(10) + freq(20) · cost(20) +

freq(30) · cost(30) + freq(40) · cost(40)

= 40% · 2 + 15% · 1 + 35% · 3 + 10% · 2
= 2.2

where freq(k) denotes the search frequency of key k, and cost(k)
denotes the cost of searching for k in the tree.

Yufei Tao Dynamic Programming 2: Optimal BST



7/20

The Optimal BST Problem

Input:

A set S of n integers: {1, 2, ..., n};

An array W where W [i ] (1 ≤ i ≤ n) stores a positive integer weight.

Output:
A BST T on S with the smallest average cost:

avgcost(T ) =
n∑

i=1

W [i ] · costT (i).

where costT (i) = 1 + levelT (i) is the number of nodes accessed to find
the key i in T .

Think: here we consider that the keys are 1, 2, ...n, respectively;
do we lose any generality?

Yufei Tao Dynamic Programming 2: Optimal BST



8/20

A Slightly More General Problem

We will solve a more general version of the problem.

Input:

S and W same as before;

Integers a, b satisfying 1 ≤ a ≤ b ≤ n.

Output:
A BST T on {a, a + 1, ..., b} with the smallest average cost:

avgcost(T ) =
b∑

i=a

W [i ] · costT (i).

where costT (i) = 1 + levelT (i) is the number of nodes accessed to find
the key i in T .

Yufei Tao Dynamic Programming 2: Optimal BST



9/20

As mentioned, an important step in designing a dynamic programming
algorithm is to figure out the recursive structure of the underlying
problem. Typically, this involves three steps:

1 identify all the possible options for the “first” choice;

2 conditioned on the first choice, find the optimal solution;

3 take the first choice that leads to the overall best solution.

Next, we will explain how to do so for the optimal BST problem.

Yufei Tao Dynamic Programming 2: Optimal BST



10/20

1. Find all the Options for the First Choice
First Choice: Key at the root of T?
Clearly, we have b − a + 1 options: we can put a, a + 1, ..., or b as the
key at the root.

Suppose that we put r as the key at the root for some r ∈ [a, b]. Then,
its left subtree must be a BST T1 on S1 = {a, ..., r − 1}, and its right
subtree must be a BST T2 on S2 = {r + 1, ..., b}.

r

T1 T2

Yufei Tao Dynamic Programming 2: Optimal BST



11/20

Example: S = {1, 2, 3, 4}; W = (40, 15, 35, 10).

Consider the option of putting 2 at the root. The left subtree must
contain just a single leaf with the key 1.

The right subtree, on the other hand, has two choices:

4

3

or

4

3

Yufei Tao Dynamic Programming 2: Optimal BST



12/20

2. Conditioned on the First Choice, Find the Optimal Solution:
Put r at the root of T . Next, we will show that, to minimize the average
cost of T , we should choose the best trees for T1 and T2.

r

T1 T2

avgcost(T )

=
b∑

i=a

W [i ] · costT (i) =
b∑

i=a

W [i ] · (1 + levelT (i))

=

(
b∑

i=a

W [i ]

)
+

b∑
i=a

W [i ] · levelT (i)

=

(
b∑

i=a

W [i ]

)
+

(
r−1∑
i=a

W [i ] · levelT (i)

)
+

(
b∑

i=r+1

W [i ] · levelT (i)

)

(Continuing on the next slide)

Yufei Tao Dynamic Programming 2: Optimal BST



13/20

=

(
b∑

i=a

W [i ]

)
+

(
r−1∑
i=a

W [i ] · (1 + levelT1(i))

)
+(

b∑
i=r+1

W [i ] · (1 + levelT2(i))

)

=

(
b∑

i=a

W [i ]

)
+

(
r−1∑
i=a

W [i ] · costT1(i)

)
+

(
b∑

i=r+1

W [i ] · costT2(i)

)

=

(
b∑

i=a

W [i ]

)
+ avgcost(T1) + avgcost(T2)

Clearly, we should minimize avgcost(T1) and avgcost(T2), namely,

building optimal BSTs on S1 and S2, recursively.

Yufei Tao Dynamic Programming 2: Optimal BST



14/20

Example: S = {1, 2, 3, 4}; W = (40, 15, 35, 10).

Consider the option of putting 2 at the root. As mentioned, the
right subtree has two choices:

4

3

or

4

3

We know from the above discussion that the right subtree should
be an optimal BST on {3, 4}. Which of the above two choices is
optimal on {3, 4}?

The answer is the second one: it has an average cost of 35 · 1 +
10 · 2 = 55.

Yufei Tao Dynamic Programming 2: Optimal BST



15/20

Define optavg(a, b) as

0, if a > b;

the smallest average cost of a BST on {a, a + 1, ..., b}, otherwise.

Define optavg(a, b | r) as the optimal average cost of a BST, on
condition that the BST has r as the key of the root.

The previous discussion has essentially proved:

optavg(a, b | r)

=

(
b∑

i=a

W [i ]

)
+ optavg(a, r − 1) + optavg(r + 1, b).

Yufei Tao Dynamic Programming 2: Optimal BST



16/20

Example: S = {1, 2, 3, 4}; W = (40, 15, 35, 10).

Consider the option of putting 2 at the root.

optavg(1, 4 | 2)

=

(
4∑

i=1

W [i ]

)
+ optavg(1, 1) + optavg(3, 4)

= 100 + 40 + 55 = 195.

Hence, if we want to put 2 at the root, the best BST we can
construct has average cost 195.

Yufei Tao Dynamic Programming 2: Optimal BST



17/20

3. Selecting the Best First Choice: The best choice for r is the one
that leads to the smallest average cost, namely:

optavg(a, b)

=
b

min
r=a

optavg(a, b | r)

=

(
b∑

i=a

W [i ]

)
+

b
min
r=a

{
optavg(a, r − 1) + optavg(r + 1, b)

}
.

This is the recursive structure of the problem.

Yufei Tao Dynamic Programming 2: Optimal BST



18/20

Example: S = {1, 2, 3, 4}; W = (40, 15, 35, 10).
The optimal tree is actually:

1

2

4

3

optavg(1, 4) = optavg(1, 4 | 3)

=

(
4∑

i=1

W [i ]

)
+ optavg(1, 2) + optavg(4, 4)

= 100 + optavg(1, 2) + 10 = 110 + optavg(1, 2)

= 110 + optavg(1, 2 | 1)

= 110 +

(
2∑

i=1

W [i ]

)
+ optavg(1, 0) + optavg(2, 2)

= 110 + 55 + 0 + 15 = 180.

Yufei Tao Dynamic Programming 2: Optimal BST



19/20

Putting Everything Together

We have converted the optimal BST problem into the following problem:

Input: An array W of n integers.
Output Compute optavg(1, n) where for any a, b ∈ [1, n]:

optavg(a, b) =
0, if a > b(∑b

i=a W [i ]
)

+ minb
r=a

{
optavg(a, r − 1) + optavg(r + 1, b)

}
otherwise

This is precisely the problem we studied in the previous lecture! Re-
call that with dynamic programming, we can compute optavg(1, n)
in O(n3) time.

Yufei Tao Dynamic Programming 2: Optimal BST



20/20

Strictly speaking, there is one more step: although we have cal-
culated optavg(1, n), we still have not produced the optimal BST
yet!

This is, in fact, rather trivial — you can do so in O(n) time after
computing optavg(1, n) with dynamic programming. This will be
left as a regular exercise.

Yufei Tao Dynamic Programming 2: Optimal BST


