
1/10

Greedy 1: Activity Selection
(Picking a Maximum Number of Disjoint Intervals)

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Activity Selection

2/10

In this lecture, we will commence our discussion of the greedy technique.
In fact, this technique enforces a very simple strategy: simply make the
locally optimal decision at each step. It is important to note that this
technique does not always give a globally optimal solution. There are,
however, problems where it does. The nontrivial part of applying the
technique is to prove (or disprove) the global optimality.

Yufei Tao Activity Selection

3/10

Activity Selection

Problem definition

Input: A set S of n intervals of the form [s, f] where s and f are integer
values.
Output: A subset T of disjoint intervals in S with the largest size |T |.

Remark: You can think of [s, f] as the duration of an activity, and
consider the problem as picking the largest number of activities
that do not have time conflicts.

Yufei Tao Activity Selection

4/10

Activity Selection

Example: Suppose

S = {[1, 9], [3, 7], [6, 20], [12, 19], [15, 17], [18, 22], [21, 24]}.

An optimal solution is T = {[3, 7], [15, 17], [18, 22]}.
Optimal solutions may not be unique; here is another one:
T = {[1, 9], [12, 19], [21, 24]}.

Yufei Tao Activity Selection

5/10

Activity Selection

Complication: Once an interval is taken, those overlapping with it will
have to be discarded. So one mistake may lead to a suboptimal solution.

It turns out that the following greedy strategy works: simply take
the interval with the earliest finish time (i.e., smallest f -value) at
each step.

Algorithm
Repeat the following steps until S becomes empty:

Add to T the interval I ∈ S with the smallest finish time.

Remove from S all the intervals intersecting I (including I itself)

Yufei Tao Activity Selection

6/10

Activity Selection

Example: Suppose S = {[1, 9], [3, 7], [6, 20], [12, 19], [15, 17], [18, 22],
[21, 24]}.

Sort the intervals in S by finish time: S = {[3, 7], [1, 9], [15, 17],
[12, 19], [6, 20], [18, 22], [21, 24]}.

We first add [3, 7] to T , after which intervals [3, 7], [1, 9] and [6, 20]
are removed. Now S becomes S = {[15, 17], [12, 19], [18, 22],
[21, 24]}. The next interval added to T is [15, 17], which shrinks S
further to S = {[18, 22], [21, 24]}. After [18, 22] is added to T , S
becomes empty and the algorithm terminates.

Yufei Tao Activity Selection

7/10

Activity Selection

Now comes the nontrivial part: prove the algorithm is correct, namely, it
indeed returns an optimal solution. We will do so by mathematical
induction.

Base Step: n = 1.
That is, S has only one interval, in which case the output of the
algorithm is obviously optimal.

Inductive Step: Assuming that the algorithm is correct for all n ≤ k.
We will prove that it is also correct for n = k + 1.

Yufei Tao Activity Selection

8/10

Activity Selection

Claim: Let I = [s, f] be the interval in S with the smallest finish time.
There must be an optimal solution that contains I.

Proof: Let T ∗ be an arbitrary optimal solution that does not contain I.
We will turn T ∗ into another optimal solution T that contains I, and
thereby finish the proof.

Let I ′ = [s ′, f ′] be the interval in T ∗ with the smallest finish time. We
construct T as follows: add all the intervals in T ∗ to T except I ′, and
finally add I to T .

We will prove that all the intervals in T are disjoint. This indicates that
T is also an optimal solution, and hence, will complete the proof.

Yufei Tao Activity Selection

9/10

Activity Selection

It suffices to prove that I cannot intersect with any other interval J ∈ T .

Suppose on the contrary that there is such a J = [a, b]. By definition of
I ′, we must have f ′ ≤ b. Combining this and the fact that J is disjoint
with I ′, we assert that f ′ < a. On the other hand, by definition of I, it
must hold that f ≤ f ′. It thus follows that f < a. But this indicates that
I and J are disjoint, giving a contradiction.

Yufei Tao Activity Selection

10/10

Activity Selection

Think 1: Now that we know I must be in an optimal solution, how do
we proceed with the induction proof that the algorithm is correct for
n = k + 1? This will be left as a regular exercise (solution provided in
full).

Think 2: How to implement the algorithm in O(n log n) time? This will

be left as another regular exercise (again, solution provided in full).

Yufei Tao Activity Selection

