CSCI3160: Regular Exercise Set 9

Prepared by Yufei Tao

Problem 1*. Let G = (V, E) be a weighted directed acyclic graph. Given a source vertex s € V,
design an algorithm to find the shortest path distances from s to the vertices in V. Your algorithm
should terminate in O(|V| + |E|) time.

Solution. First run DFS on G to obtain a topological order of V. For each v € V, initialize a value
dist(v) which equals 0 if v = s, and oo otherwise. Now, process the vertices of V' according to the
topological order. Specifically, processing a vertex u means relaxing all the out-going edges (u,v) of
u. After every vertex has been processed, the final dist(v) is the shortest path distance from s to v,
for every v € V.

To prove this is correct, recall that (as discussed earlier in the lecture) the shortest-path distances
spdist(s,v) from s to v € V satisfy:

spdist(s,v) = min spdist(s,u) + w(u,v)
w€IN (v)

where w(u, v) denotes the weight of the edge (u,v), and IN (v) is the set of in-neighbors of v. The
correctness of our algorithm thus follows from:

Claim: At the moment right before v is processed, spdist(u) has already been computed
for every u € IN(v).

The above claim can be easily established by induction on the number of edges in a shortest path.

Problem 2. Let G = (V| E) be a weighted directed graph where the weight of an edge (u,v)
is w(u,v). It is guaranteed that G has no negative cycles. Prove: the following is a correct
implementation of Bellman-Ford’s algorithm:

algorithm Bellman-Ford
pick an arbitrary vertex s € V
set A to the sum of all the positive edge weights in G
initialize dist(s) = 0 and dist(v) = A for every other vertex v € V'
fori=1to |V|—-1
relax all the edges in F
return dist(v) for allv e V

ANl S

Remark: Compared to the description in our lecture notes, the key difference here is that, at
Line 3, we initialize dist(v) as A, instead of oco.

Solution. Follows directly from the fact that, to every vertex v € V', s has a shortest path that is
a simple path. Notice that every simple path has a length at most A.

Problem 3*. Let G = (V, E) be a weighted directed graph where the weight of an edge (u,v) is
w(u,v). Prove: the following algorithm correctly decides whether G has a negative cycle:

algorithm negative-cycle-detection
1. pick an arbitrary vertex s € V
2. set A to the sum of all the positive edge weights in G

initialize dist(s) = 0 and dist(v) = A for every other vertex v € V'
fori=1to |V]|—-1
relax all the edges in F
for each edge (u,v) € E
if dist(v) > dist(u) + w(u, v) then
return “there is a negative cycle”
return “no negative cycles”

© 0N oW

Solution. We will prove two directions.

Direction 1: If the inequality of Line 6 holds for any edge (u,v), then there must be a negative
cycle. In the lecture we proved that, in the absence of negative cycles, Bellman-Ford’s algorithm
correctly finds all shortest path distances (from s) after |V| — 1 rounds of edge relaxations. This
(together with the result of Problem 2) indicates that, if there are no cycles, when we come to Line
5 the value dist(v) must be the final shortest path distance for every v € V. If Line 6 holds for
some edge (u,v), however, it means that an even shorter path from s to v has just been discovered.
Therefore, in such a case, G must contain a negative cycle.

Direction 2: If there is a negative cycle, then the inequality of Line 6 must hold for at least one
edge (u,v). Suppose that the negative cycle is vi = vy — ... = vy — v;. Hence:

/-1

w(vg,vl)+2w(vi,vi+1) < 0. (1)
i=1

Assume that Line 6 does not hold on any edge in E. This indicates:
e for every i € [1,n], dist(vit1) < dist(v;) + w(vi, vit1);
o dist(vy) < dist(vy) + w(vp, v1).

These two bullets lead to:

~

-1

l ¢
Z dist(v;) < (Z dist(vﬁ) +w(vg,v1) + Y w(vi, vig1)
i=1 i=1

=1

/—
=0 < w(v,v)+ Z'I,U(Ui,'l}i+1)

1=1

[y

which contradicts (1).

Problem 4. In our lecture about the Floyd-Warshall algorithm, we have given the following
recursive function:

e . spdist(i,j |< k—1)
< =
spdist (i, j |< k) mm{ spdist(i,k |[< k — 1) + spdist(k,j |< k — 1)
Give the details of computing spdist(i, j) for all i,j € [1,n] in O(n3) time.

Solution.

algorithm Floyd-Warshall
1. for all 4,5 € [1,n]

2. set spdist(i,7 |<0) =0 if i = j or oo otherwise

3. fork=1ton

4. for all i, j € [1,n]

5. set spdist(i, 7 |< k) according to the recursive function

Problem 5. Augment your algorithm for the previous problem to compute the shortest path
between vertex i and vertex j, for all i,5 € [1,n].

Solution.

algorithm Floyd-Warshall
1. for all i,j € [1,n]
2. set spdist(i,7 |< 0) =0if i = j or oo otherwise
set bestchoice(i, j) = nil
for k=1ton
for all 4,5 € [1,n]
if spdist(i,j |< k—1) < spdist(i,k — 1 |< k —1)+ spdist(k — 1,7 |[< k — 1) then
spdist(i,j |< k) = spdist(i,j |< k —1)
else
spdist(i,§ |< k) = spdist(i,k — 1 |< k—1)+ spdist(k — 1,7 |< k — 1)
bestchoice(i,j) = k

N Gt W

© ®

The function bestchoice(.,.) computed by the above algorithm encodes all the shortest paths.
Specifically, for any 4,5 € [1,n] such that i # j:

o if bestchoice(i, j) = nil, the shortest path from i to j consists of just the edge (i, 7);

e if bestchoice(i,j) = k, the shortest path concatenates the shortest path from ¢ to k and the
shortest path from k£ to j — note that the latter two shortest paths can be obtained recursively
in the same manner.

