CSCI3160: Regular Exercise Set 6

Prepared by Yufei Tao

Problem 1*. Let A be an array of n integers. Define a function f(x) — where $x \ge 0$ is an integer — as follows:

$$f(x) = \begin{cases} 0 & \text{if } x = 0\\ \max_{i=1}^{x} (A[i] + f(x-i)) & \text{otherwise} \end{cases}$$

Consider the following algorithm for calculating f(x):

```
algorithm f(x)

1. if x = 0 then return 0

2. max = -\infty

3. for i = 1 to x

4. v = A[i] + f(x - i)

5. if v > max then max = v

6. return max
```

Prove: the above algorithm takes $\Omega(2^n)$ time to calculate f(n).

Solution. Let g(x) denote the time of the algorithm in calculating f(x). We know:

$$g(0) \geq 1$$

$$g(1) \geq 1$$

$$g(n) \geq \sum_{i=0}^{n-1} g(i)$$

We will show by induction that $g(n) \ge 2^{n-1}$ for $n \ge 1$. First, this is obviously correct when n = 1. Next, we will prove the claim on n = k for any $k \ge 2$, assuming that it is correct for all $n \le k-1$.

$$g(n) \geq \sum_{i=0}^{n-1} g(i)$$

$$\geq 1 + \sum_{i=1}^{n-1} g(i)$$

$$\geq 1 + \sum_{i=1}^{n-1} 2^{i-1}$$

$$\geq 2^{n-1}.$$

Problem 2. Consider once again Problem 1. Design an algorithm to calculate f(n) in $O(n^2)$ time. **Solution.** Calculate f(x) in ascending order of x = 0, 1, ..., n. After f(0), ..., f(x - 1) are ready, f(x) can be obtained in O(1 + x) time. The total running time is therefore $\sum_{x=0}^{n} O(1 + x) = O(n^2)$. **Problem 3.** Recall that, on the optimal BST problem, we have explained in the class how to calculate optavg(1,n) using dynamic programming in $O(n^3)$ time where function optavg(a,b) is recursively defined as

$$optavg(a,b) = \begin{cases} 0 & \text{if } a > b \\ \sum_{i=a}^{b} W[i] + \min_{r=a}^{b} \{optavg(a,r-1) + optavg(r+1,b)\} & \text{otherwise} \end{cases}$$

However, we have not yet explained how to build in an optimal BST. Describe an algorithm to do so in $O(n^3)$ time (in fact, you can build the tree in O(n) time after having computed optavg(1, n), but you will need to modify what we did in dynamic programming slightly).

Solution. Recall that using dynamic programming we can obtain optavg(a, b) for all $1 \le a \le b \le n$. For any such a, b define bestroot(a, b) to be the $r \in [a, b]$ that minimizes

$$optavg(a, r-1) + optavg(r+1, b)$$

It is straightforward to slightly extend the algorithm to compute also bestroot(a, b), for all a, b satisfying $1 \le a \le b \le n$, also within the same time complexity $O(n^3)$.

Then we can construct an optimal BST as follows. First, create a root node u with the key r = bestroot(1, n). Recursively create an optimal BST T_1 on the set $\{1, 2, ..., r - 1\}$ and an optimal BST T_2 on the set $\{r + 1, r + 2, ..., n\}$. Make the root of T_1 the left child of u, and then the root of T_2 the right child of u.

Problem 4 (Rod-Cutting; Section 15.1 of the Textbook). Let A be an array of n integers. Let us define an *n*-sum sequence as a sequence of integers $x_1, x_2, ..., x_t$ (where t can be any integer at least 1) satisfying both conditions below:

- $1 \leq x_i \leq n$ for all $i \in [1, t]$
- $\sum_{i=1}^{t} x_i = n.$

Define the *cost* of the above *n*-sum sequence as $\sum_{i=1}^{t} A[x_i]$. Give an algorithm to produce an *n*-sum sequence with the largest cost in $O(n^2)$ time.

Solution. Define function opt(x) as the largest cost of all x-sum sets; specially, if x = 0, define opt(x) = 0. This function satisfies:

$$opt(x) = \max_{i=1}^{x} \{A[i] + opt(x-i)\}.$$

In Problem 2, we have given an algorithm to calculate opt(n) in $O(n^2)$ time.

An *n*-sum sequence with the greatest cost can be produced in another O(n) time as follows. For any $x \ge 1$, define bestChoice(x) to be the $i \in [1, x]$ that maximizes

$$A[i] + opt(x-i).$$

The values bestChoice(x) of all $x \in [1, n]$ can be computed by slightly modifying the algorithm in Problem 2 without increasing its time complexity. To produce an optimal sequence, first set $x_1 = bestChoice(n)$. If $x_1 = n$, we are done; otherwise, append to x_1 an optimal $(n - x_1)$ -sum sequence.