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Abstract

The classical NP-complete problem Vertex Cover requires us to deter-
mine whether a graph contains at most k vertices that cover all edges. In spite
of its intractability, the problem can be solved in FPT time for parameter k
by various techniques.

In this paper, we present half a dozen new and simple FPT algorithms for
Vertex Cover with respect to parameter k. For this purpose, we explore
structural properties of vertex covers and use these properties to obtain FPT
algorithms by iterative compression, colour coding, and indirect certificating
methods. In particular, we show that every graph with a k-vertex cover admits
an indirect certificate with at most k/3 vertices, which lays the foundation of
three new FPT algorithms based on random partition and random selection.

Keywords and phrases: Vertex cover, indirect certificate, FPT algorithm,
graph algorithm, randomized algorithm, iterative compression, colour coding,
and indirect certificating.
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1 Introduction

We start with the following extremely simple algorithm for a graph G, whereN(M)
denotes the open neighbourhood of marked vertices, and a graph in Figure 1:

Randomly mark each vertex with probability 1/2 and output N(M).

What problem does the above algorithm solve? Surprisingly, we will show later
that it actually finds, with probability at least 4−k, a vertex cover consisting of at
most k vertices, if G admits such a vertex cover.

Figure 1: A graph with one marked vertex as certificate.

As for the graph in Figure 1, the single dark vertex in the graph, instead of
a vertex cover with eight vertices, can be used as an indirect certificate to certify
that the graph has such a vertex cover. And the existence of such small indirect
certificates has an intimate connection with the above algorithm.

Yes, the subject of this paper is the classical Vertex Cover problem and we
are interested in designing new FPT algorithms for the problem.

Vertex Cover

Instance: Graph G = (V,E), and positive integer k as parameter.
Question: Does G contain a vertex cover of size at most k, i.e., at
most k vertices that cover all edges?

Our motivations are multifold though not for the race of fastest FPT algo-
rithms:

• We wish to find structural properties that give us a better understanding of
the problem and will be useful for obtaining FPT algorithms.

• Simple FPT algorithms of different flavours for Vertex Cover are instru-
mental in teaching FPT algorithms as the problem is almost always used as
the first example in such an endeavour.
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• It is also intellectually challenging to find different methods to solve a prob-
lem, aiming for elegant and simple algorithms and proofs.

There are about a dozen different FPT algorithms for Vertex Cover [1,
3, 7, 9, 10, 13], and the current fastest one of Chen, Kanj, and Xia [7] runs in
O(1.2738k + kn) time. Most such algorithms are based on structural properties
of vertex covers. For instance, the basic bounded search tree algorithm [13, 10] is
based on the trivial fact that we need to choose at least one end of an edge to cover
the edge, and the kernelization algorithm of Buss [3] uses the simple observation
that any vertex of degree more than k is forced to be in any vertex cover of size k.

In this paper, we present half a dozen new and simple FPT algorithms for
Vertex Cover:

• Three FPT algorithms based on the idea of “indirect certificating” that ex-
plores indirect certificates for NP-complete problems and generalizes the ran-
dom separation method of Cai, Chan and Chan [4] (§2). The foundation of
these three algorithms relies on the property that every yes-instance of Ver-

tex Cover admits an indirect certificate of size at most k/3.

• FPT algorithms that rely on characterizations of minimum vertex covers and
use the iterative compression method of Reed, Smith and Vetta [18](§3).

• A linear-time algorithm for finding colourful vertex covers, which yields an
FPT algorithm by the colour coding method of Alon, Yuster, and Zwick [2](§4).

In this paper, G = (V,E) is a graph with m edges and n vertices. For conve-
nience, we use k-vertex cover for any vertex cover with at most k vertices. Note
that m ≤ kn for any graph containing a k-vertex cover.

For any subset S of vertices, N(S) denotes the open neighbourhood of S, i.e.,
all vertices in V − S that are adjacent to S, and N [S] the closed neighbourhood

of S which equals S ∪ N(S). By indirect certificate, we refer to a structure χ
disjoint from a solution X such that χ can be used to certify the existence of X
in polynomial time, and we say that χ is a small indirect certificate if its size is
bounded above by a function of |X| alone. For two disjoint subsets χ and X of
vertices V , a partition (V ′, V − V ′) of V is a valid (χ,X)-partition if χ ⊆ V ′ and
X ⊆ V − V ′.

2 Indirect certificates

The random separation method of Cai, Chan and Chan [4] is an innovative method
for designing FPT algorithms to solve graph problems. The basic idea of their
method is to randomly partition the vertex set of a graph into red and blue vertices
to separate a k-solution X (i.e., a solution with ≤ k vertices) into blue components,
and then choose appropriate blue components to form a k-solution. The method
is very effective for problems on degree-bounded graphs, and basically can be
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used to obtain FPT algorithms for any problems dealing with “local properties”.
Unfortunately, the original idea of their random separation method requires the
size of N [X] be bounded by a function of k, which limits the power of their method
to basically degree-bounded graphs. And it seems impossible to obtain an FPT
algorithm for Vertex Cover by random separation.

However, a close examination of the method reveals that it is a special case of
a more general idea of indirect certificating that uses small indirect certificates as
helpers to find k-solutions:

First discover a small-size structure χ that is disjoint from a k-solution
X and can be used as a certificate for a yes-instance. Then use random

partition to produce a valid (χ,X)-partition, and find a k-solution with

the aid of χ.

In fact two examples in Cai, Chan and Chan [4], including the problem of finding
a maximum-weight independent set of size k in planar graphs, implicitly used this
general idea.

This general idea of indirect certificating seems quite potential for obtaining
FPT algorithms, and there have been a few FPT algorithms based on this idea:
Cygan et al. [8] have designed an FPT algorithm for obtaining an Eulerian graph
by deleting at most k edges, and Cai and Ye [6] have presented FPT algorithms
for finding two edge-disjoint (s, t)-paths with some length constraints.

In the following three subsections, we will use the idea of indirect certificating
to design three randomized FPT algorithms. Foundations of these algorithms are
laid by a simple indirect certificate of size k (Lemma 2.1) and an elaborated indirect
certificate of size k/3 (Theorem 2.4) for Vertex Cover.

2.1 Certificates with k vertices

We will show that the algorithm that starts the paper is a randomized FPT al-
gorithm for Vertex Cover based on the idea of indirect certificating. First we
present an alternative certificate χ for the problem, as we can use χ, instead of a
k-vertex cover, to verify that a graph is indeed a yes-instance of Vertex Cover.

Lemma 2.1 For any minimal vertex cover X of a graph G = (V,E), G contains

an independent set χ with at most |X| vertices such that N(χ) = X.

Proof. Since X is a minimal vertex cover, every vertex in X covers at least one
edge in cut [X,V − X]. For each vertex v ∈ X, arbitrarily choose an adjacent
vertex v′ ∈ V −X and let χ = {v′ : v ∈ X }. Then χ clearly has the properties
in the lemma as V −X is an independent set.

The above simple structural property of vertex cover is surprisingly useful for
designing a randomized FPT algorithm for Vertex Cover. Let G = (V,E) be a
graph that admits a k-vertex cover X, and we may assume that X is a minimal
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Figure 2: Vertices inside the shaded polygon form a vertex cover X of the graph,
and dark vertices χ yield an indirect certificate of size 4. Note that X is not a
minimal vertex cover, and N(χ) gives a smaller one.

vertex cover. Then by Lemma 2.1, V −X contains at most k vertices χ disjoint
from X, and χ forms an indirect certificate that can be used to verify the existence
of X. As X and χ reside in two disjoint sets, random partition becomes a natural
tool to obtain a randomized FPT algorithm for Vertex Cover.

We randomly and independently colour each vertex by either red or blue with
equal probability to form a random partition {Vr, Vb} of vertices of G, where Vr

and Vb respectively are red and blue vertices. There are two key points to note:

• A random red-blue colouring has probability at least 4−k to produce a valid
(χ,X)-partition.

• Once we have a valid (χ,X)-partition, the neighbourhood of red vertices
yields a required vertex cover.

The following is the algorithm at the beginning of the paper in the language
of red-blue colouring.

Algorithm VC-IC[k]
Input: A graph G = (V,E).
Output: A k-vertex cover X of G, if it exists.

1. Randomly and independently colour each vertex red or blue with
probability 1/2 to generate a random vertex-partition (Vr, Vb) of G.

2. Output N(Vr) as X.

Theorem 2.2 Algorithm VC-IC[k] finds, with probability at least 4−k, a k-vertex
cover of G, if it exists, in O(kn) time, and therefore solves Vertex Cover in

O(4kkn) expected time.
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Proof. Let X be a minimal k-vertex cover of G. By Lemma 2.1, G contains
at most k vertices χ such that N(χ) = X. Then with probability at least 2−k,
Step 1 colours all vertices in χ red and all vertices in X blue. It follows that
Step 1 produces a valid (χ,X)-partition (Vr, Vb) with probability at least 4−k, and
therefore the expected number of random red-blue colourings required to produce
a valid (χ,X)-partition is O(4k).

For any valid (χ,X)-partition (Vr, Vb) of vertices, we see that N(Vr) contains
X as all vertices of χ are red and N(χ) = X by Lemma 2.1. On the other hand,
Vr ⊆ V −X and hence N(Vr) contains no vertex of V −X as Vr is an independent
set. Therefore N(Vr) = X and the algorithm correctly returns X for such a
partition in O(kn) time as m ≤ kn.

The algorithm can be made into a deterministic FPT algorithm with running
time 4kkO(log k)n log n by a family of (n, 2k)-universal sets for derandomization [16].

2.2 Smaller certificates

It is perhaps surprising that the mere existence of an indirect certificate χ of
size k enables us to find a k-vertex cover X in expected FPT time, even without
knowing the actual χ. This motivates us to search for smaller indirect certificates,
and indeed we can significantly reduce the size of certificates to k/3 only, which
leads to an improvement of our FPT algorithm.

We start with a general property regarding a relatively small number of vertices
in connection with minimum vertex covers to lay the foundation of certificates of
size k/3 for Vertex Cover. For any integer d ≥ 0, let Vd denote the set of
vertices of degree at least d.

Lemma 2.3 Every graph G with a k-vertex cover contains at most k/d vertices

χ, where d is any positive integer, such that for every minimum vertex cover X∗

of G− (N [χ] ∪ Vd(G −N [χ])), vertices N(χ) ∪ Vd(G−N [χ]) ∪X∗ is a minimum

vertex cover of G.

Proof. Let X be a minimum vertex cover of G. We construct χ by choosing at
most k/3 vertices from V −X as follows. Note that all vertices of X are unmarked
initially, and we process vertices V −X in an arbitrary given order. Also note that
for any vertex v ∈ V −X, N(v) ⊆ X.

For each v ∈ V −X, we put v into χ and mark all unmarked vertices
in N(v) whenever v is adjacent to at least d unmarked vertices in X.

For convenience let H = G−N [χ] and G∗ = H − Vd(H), and note that X∗ is
a minimum vertex cover of G∗. It is clear that |χ| ≤ k/d as we mark at least d
unmarked vertices in X each time we put a vertex into χ. We show that vertices
N(χ)∪Vd(H)∪X∗ is a minimum vertex cover of G. First we note that Vd(H) ⊆ X
as all vertices of V − X in H have degree less than d by the choice of χ. Also,
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N(χ)∪Vd(H)∪X∗ is clearly a vertex cover of G as all edges outside G∗ are covered
by N(χ) ∪ Vd(H).

It remains to be shown that N(χ)∪Vd(H)∪X∗ has the same number of vertices
as X. It is helpful to note that X consists of three disjoint parts: N(χ), Vd(H),
and the remaining vertices R. Since Vd(H) ∪ R is a minimum vertex cover of
H, R is a minimum vertex cover of G∗. Therefore |R| = |X∗| as X∗ is also a
minimum vertex cover of G∗. It follows that |N(χ)∪Vd(H)∪X∗| = |X| and hence
N(χ) ∪ Vd(H) ∪X∗ is a minimum vertex cover of G.

X

V − X

N(  )
G*

Vd R

H

(   )H

Figure 3: The structure of G with respect to vertex cover X and indirect certificate
χ.

The above lemma has interesting and surprising consequences. For Vertex

Cover, Lemma 2.3 for d = k + 1 actually gives us an alternative perspective of
the kernelization algorithm of Buss [3]: In this case, both χ and N [χ] are empty,
and hence Vk+1(G) are vertices forced to be in any k-vertex cover, and graph
G− Vk+1(G) has maximum degree at most k and forms a kernel of the problem.

Turing to indirect certificates, we recall that Vertex Cover remains NP-
complete for cubic graphs but is trivially solved in linear time for graphs of max-
imum degree at most two, i.e., graphs consisting of disjoint union of paths and
cycles. By setting d = 3 in Lemma 2.3, we see that k/3 vertices are sufficient to
certify yes-instances of Vertex Cover, which yields the single-vertex certificate
in Figure 1 at the beginning of the paper.

Theorem 2.4 Every yes-instance (G, k) of Vertex Cover admits a certificate

χ with at most k/3 vertices.

Proof. Let X be a minimum vertex cover of G. Then |X| ≤ k and we use χ in
Lemma 2.3 with d = 3 as a certificate for our verification algorithm.

Let G∗ = G−(N [χ]∪V3(G−N [χ])). Given G and χ as input, we first compute a
minimum vertex cover X∗ of G∗, which by Lemma 2.3 yields N(χ)∪V3(G−N [χ])∪
X∗ as a minimum vertex cover of G. Since G∗ is a graph of maximum degree two,
the computation of X∗ takes linear time. Therefore we can verify that (G, k) is
indeed a yes-instance of Vertex Cover in polynomial time.
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With Lemma 2.3 at hand, we can easily improve the success probability of
Algorithm VC-IC[k] from 4−k to 2−

4

3
k > 2.5199−k . In fact, we can further improve

it to 2.1166−k by optimizing the probabilities of colouring vertices red or blue.

Algorithm VC-IC[k/3]
Input: A graph G = (V,E).
Output: A k-vertex cover X of G, if it exists.

1. Randomly and independently colour each vertex red with probability
1/4 and blue with probability 3/4 to generate a random vertex-
partition (Vr, Vb) of G.

2. Compute a minimum vertex cover X∗ of G−(N [Vr ]∪V3(G−N [Vr]),
and output N(Vr) ∪ V3(G−N [Vr]) ∪X∗ as X.

Theorem 2.5 Algorithm VC-IC[k/3] finds, with probability at least 2.1166−k, a

k-vertex cover of G, if it exists, in O(kn) time, and therefore solves Vertex

Cover in O(2.1166kkn) expected time.

Proof. Let G be a graph with a k-vertex cover X. By Lemma 2.3 for d = 3,
G contains an indirect certificate χ with at most k/3 vertices. Therefore Step 1
produces a valid (χ,X)-partition (Vr, Vb) with probability at least (1/4)k/3(3/4)k >
2.1166−k , implying that the expected number of red-blue colourings to produce a
valid (χ,X)-partition is O(2.1166k).

For a valid (χ,X)-partition, we have χ ⊆ Vr and X ⊆ Vb. Since X cover all
edges, we see that Vr is an independent set and hence N(Vr) ⊆ X. Now by the
choice of χ, no vertex in V3(G−N [χ]) resides in V −X and hence V3(G−N [χ]) ⊆ X,
which implies V3(G − N [Vr]) ⊆ X as V3(G − N [Vr]) is an induced subgraph of
V3(G−N [χ]). Finally G∗ = G− (N [Vr] ∪ V3(G−N [Vr])) is a graph of maximum
degree at most two, i.e., a disjoint union of paths and cycles. Therefore we can
easily compute in linear time a minimum vertex cover X∗ of G∗. Using the same
arguments in the proof of Lemma 2.3, we see that X∗, N(Vr), and V3(G−N [Vr])
together form a minimum vertex cover of G.

2.3 Semi-random partitions

As shown earlier, the existence of indirect certificates for vertex covers enables us
to obtain randomized FPT algorithm based on random partition of vertices. Here
we further attest the surprising usefulness of indirect certificates by presenting
another very simple algorithm for vertex covers based on random selection.

First we note that in Algorithm VC-IC[k], the colour of a vertex is totally inde-
pendent of colours of other vertices, and the order we process vertices is immaterial.
This is in a sense wasteful as a red vertex actually forces all its neighbours to be
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blue in order to obtain a valid (χ,X)-partition. We now incorporate this forcing
step into our algorithm to make the colouring stage semi-random, which increases
the chance of obtaining a valid (X,χ)-partition and hence the chance of success
for the algorithm.

Procedure Semi-Random-Partition
Input: Graph G = (V,E).
Output: Red-blue partition (Vr, Vb) of V .

Repeat the following until all vertices of G are coloured: Randomly choose
an uncoloured vertex v, colour it red or blue with probability p for red and
probability 1−p for blue, and colour all neighbours of v blue if v is coloured
red.

We remark that the above procedure does not recolour neighbours of v as they
are either uncoloured or blue when the procedure colours v. To see this, we note
that if any vertex u ∈ N(v) is red, then u is coloured red before v, which would
have forced v blue.

Lemma 2.6 Let p be the probability that a vertex is coloured red. For any vertex

v of degree d, the probability P (v) that Semi-Random-Partition colours v red and

all vertices in N(v) blue is at least

1− (1− p)d+1

d+ 1

for p < 1 and 1/(d+ 1) for p = 1.

Proof. First we note that for a random permutation of N [v], vertex v has prob-
ability 1/(d + 1) to be in position i for any 0 ≤ i ≤ d. For v in position i, the i
vertices v′ of N(v) before v need to be blue in order for v to be red, which forces
the remaining vertices in N(v) to receive blue. This gives us success probability
of (1 − p)ip for v in position i, as each vertex v′ has probability at least 1 − p
to be blue (note that v′ may have been forced to be blue before it is processed).
Therefore

P (v) ≥ 1

d+ 1

d∑

i=0

(1− p)ip,

which yields the closed form in the lemma for p < 1 and 1/(d + 1) for p = 1.

We can replace Step 1 in Algorithm VC-IC[k] by Semi-Random-Partition to
obtain a new algorithm that finds in linear time a k-vertex cover of G, if it exists,
with probability at least (3/8)−k > 2.667−k. In fact we can fine-tune the prob-
ability p to maximize the success probability of our algorithm, and it turns out
that the optimal value is p = 1. This is surprising, as it suggests that there is no
need for randomness in a red-blue colouring, and it is the ordering of vertices that



New FPT Algorithms for Vertex Covers 10

determines the success probability of our algorithm. Indeed, this perspective gives
us another unexpected algorithm based on random selection: Randomly choose a

vertex and declare it to be not in solution.

Algorithm VC-SRP
Input: A graph G = (V,E).
Output: A k-vertex cover X of G, if it exists.

1. Repeat the following until all vertices are coloured: Randomly and
uniformly choose an uncoloured vertex v, colour v red and all neigh-
bours of v blue to form a (Vr, Vb)-partition of V .

2. Output N(Vr) as X.

We now use Lemma 2.1 and Lemma 2.6 to prove the correctness and analyze
the success probability of the above algorithm. For an ordering of V , we write
u ≺ v if vertex u appears before vertex v in the ordering.

Theorem 2.7 Algorithm VC-SRP finds, with probability at least 2−k, a k-vertex
cover of G, if it exists, in O(kn) time, and therefore solves Vertex Cover in

O(2kkn) expected time.

Proof. As shown in the proof of Theorem 2.2, N(Vr) is a k-vertex cover once
(Vr, Vb) is a valid (χ,X)-partition. To establish the theorem, we show that Semi-
Random-Partition has probability at least 2−k to produce a valid (χ,X)-partition
(Vr, Vb). First we note that the probability of producing a valid (χ,X)-partition
only depends on the subgraph consisting of cut edges [χ,X]. Let G∗ be such a
subgraph with fewest edges and minimum probability p(G∗) of producing a valid
(χ,X)-partition for |X| = k, and we examine the structure of G∗ to determine
p(G∗).

If G∗ has two vertices u, v ∈ χ sharing a common neighbour w, let G′ = G∗−uw
and we show that p(G′) ≤ p(G∗). For this purpose, it suffices to consider a bad
vertex ordering of G∗ that colours u improperly (i.e., blue) as a consequence of
colouring w red. For this to happen, we have w ≺ u and w is uncoloured when it
is processed. Therefore we also have w ≺ v since otherwise w is forced to be blue
when v is processed, implying that v is also forced to be blue when w is processed.
Therefore the ordering is also a bad vertex ordering for G′, which implies that
p(G′) ≤ p(G∗), contradicting the choice of G∗.

Therefore G∗ consists of a disjoint union of t stars Si with vertices χ as centres.
By Lemma 2.6, each Si has probability 1/si to be properly coloured if Si contains
si vertices. Since the colouring of stars Si is independent, we have

p(G∗) =
∏

1≤i≤t

1

si
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with
∑

1≤i≤t(si − 1) ≤ k. It is easy to see that p(G∗) achieves its minimum value

2−k when every si = 2, i.e., G∗ is the disjoint union of k edges. Therefore Semi-
Random-Partition has probability at least 2−k to produce a valid (χ,X)-partition
(Vr, Vb), and hence the expected number of repeated runs of the algorithm to
produce a valid (χ,X)-partition is O(2k).

We remark that the success probability of Algorithm VC-SRP can be improved
to 1.6633−k by using indirect certificates of size k/3.

3 Minimum Vertex Covers

The iterative compression method of Reed, Smith, and Vetta [18] is a useful and
powerful tool for designing FPT algorithms. The key idea of the method is to
compress a given solution to a smaller one if it can.

We will use the iterative compression method to obtain two FPT algorithms
for Vertex Cover. For this purpose, we first turn our attention to determine
whether a given vertex cover of G = (V,E) is a minimum vertex cover.

Let X be a set of vertices in G. For a subset I ⊆ X, the outside neighbourhood

of I (w.r.t. X), denoted N∗(I), consists of vertices in V −X that are adjacent to
some vertices in I, i.e., N∗(I) =

⋃
v∈I N(v) −X. The following characterization

of a minimum vertex cover can well be a very old folklore in graph theory, and
was observed by the author in 2005 when he was desperately looking for simple
examples to teach the iterative compression method.

Lemma 3.1 A vertex cover X of a graph G = (V,E) is a minimum vertex cover

iff for every independent set I of G[X], |N∗(I)| ≥ |I|.

Proof. If G[X] contains an independent set I with |N∗(I)| < |I|, then (X − I)∪
N∗(I) is a vertex cover of G smaller than X as all edges covered by I are covered
by X − I and N∗(I). Conversely, suppose that G has a smaller vertex cover X ′.
Let I = X − X ′. Then I is an independent set of G[X], and N∗(I) ⊆ X ′ − X.
Since |X ′| < |X|, we have |X ′ −X| < |X −X ′| and hence |N∗(I)| < |I|.

The above lemma enables us to determine in FPT-time whether a (k+1)-vertex
cover of G is a minimum vertex cover, and obtain a smaller one when it is not.
The following compression routine takes O(2kkn) time as at most 2k+1 subsets of
X need to be examined in the worst case:

Consider each independent set I in a (k + 1)-vertex cover X, and check
if |N∗(I)| < |I|. If so we get a smaller vertex cover (X − I) ∪ N∗(I),
otherwise G has no k-vertex cover.

As for the question of how to obtain a (k + 1)-vertex cover in the first place,
there are at least three different ways:
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1. Recursively: Arbitrarily choose a vertex v in G and recursively solve the
problem for G−v. If G−v has no solution then neither has G. Otherwise, we
obtain a k-vertex cover X of G−v, which yields a (k+1)-vertex cover X∪{v}
for G. We need to compress O(n) times, which results in an O(2kkn2)-time
algorithm.

2. Iteratively: Order vertices as v1, . . . , vn and let Gi = G[{v1, . . . , vi}]. Then a
k-vertex cover X of Gi yields a (k+1)-vertex cover X∪{vi+1} of Gi+1, which
is then compressed into a k-vertex cover. Again, we get an O(2kkn2)-time
algorithm.

3. Approximation: Use a 2-approximation algorithm for vertex covers to find
a k′-vertex cover of G first. If k′ > 2k then the answer is no, otherwise
we compress solutions at most k times, which gives us an O(4kk2n)-time
algorithm.

Algorithmically, it is not efficient to consider all possible independent sets I
inside X, and in fact it is sufficient to consider maximal independent sets only.

Lemma 3.2 A vertex cover X of a graph G = (V,E) is a minimum vertex cover

iff for every maximal independent set I in X, I is a minimum vertex cover of the

induced subgraph G[I ∪N∗(I)].

Proof. If there is a maximal independent set I ⊆ X such that the induced
subgraph G[I ∪ N∗(I)] admits a vertex cover X ′ of size smaller than I, then
(X − I) ∪ X ′ is a smaller vertex cover of G as X − I covers all edges outside
G[I ∪N∗(I)].

Conversely, suppose thatG has a vertex coverX ′ smaller thanX. By Lemma 3.1,
there is an independent set I ′ ⊆ X satisfying |N∗(I ′)| < |I ′|. Let I ⊆ X be a max-
imal independent set containing I ′. Then G[I ∪ N∗(I)] is a bipartite graph as
N∗(I) ⊆ V − X is an independent set, and hence admits (I − I ′) ∪ N∗(I ′) as a
vertex cover, which is smaller than I as |N∗(I ′)| < |I ′|.

With Lemma 3.2 in hand, we obtain a different compression routine which
examines fewer subsets of X:

Consider each maximal independent set I in a (k+1)-vertex cover X, and
check if G[I ∪N∗(I)] has a vertex cover X ′ smaller than I. If so we obtain
a smaller vertex cover (X − I) ∪X ′, otherwise G has no k-vertex cover.

The above compression routine takes O(3k/3kn1.5) time as G[X] can contain
O(3k/3) maximal independent sets in the worst case [15], which can be listed in
time O(3k/3(m + n)) [19], and it takes O(m

√
n) time to find a minimum vertex

cover in a bipartite graph [11]. Recall that m = O(kn) for graphs with k-vertex
covers.
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4 Colourful vertex covers

Finally we turn to the colour coding method of Alon, Yuster and Zwick [2] for
Vertex Cover. The basic idea of this novel method is to use k colours to colour
elements randomly and then try to find a colourful k-solution, i.e., a k-solution
whose elements are in distinct colours. If we can find a colourful k-solution in FPT
time, then we can find a k-solution in FPT time with probability k!/kk > e−k.
The algorithm can be derandomized by a family of perfect hash functions.

The colour coding method is typically useful for parameterized problems whose
k-solutions either have a nice structure (e.g., linear, cyclic, tree) or can be par-
titioned into independent structures of constant size (e.g., triangle packing). Al-
though Vertex Cover does not seem to possess such properties, we will show
that the method is applicable to the problem. In fact, we will present a linear
algorithm for the colourful version of Vertex Cover.

Let G = (V,E; f) be a vertex coloured graph with f : V → {1, . . . , k}. We
use Vi to denote the set of vertices with colour i, and call each Vi a colour class.
A vertex cover X of G is colourful if all vertices in X have distinct colours, i.e.,
X contains at most one vertex from each colour class, and we will design a linear
algorithm for the following problem:

Colourful Vertex Cover

Instance: Vertex coloured graph G with colours in {1, . . . , k}.
Question: Does G contain a colourful vertex cover?

First we note that the problem is no easier than 2Sat as we can reduce 2Sat to
our problem in linear time: For an arbitrary instance (U,C) of 2Sat, we construct
a vertex coloured graph G by creating, for each Boolean variable ui ∈ U , two
vertices ui and ui with colour i and edge uiui; and adding, for each binary clause
{x, y} ∈ C, an edge between vertices x and y.

Inspired by the above connection with 2SAT, we first reduce Colourful

Vertex Cover to 2SAT to obtain a quadratic algorithm, and will improve it to
a linear algorithm later. For the purpose of a quadratic algorithm, we construct a
Boolean formula Φ(G) for G as follows:

1. For each vertex v, introduce a Boolean variable xv.

2. For edge set E, let Φ(E) =
∧

uv∈E xu ∨ xv.

3. For each colour class Vi, let Φ(Vi) =
∧

u,v∈Vi and u 6=v xu ∧ xv.

4. Set Φ(G) = Φ(E)
∧k

i=1Φ(Vi).

Theorem 4.1 A vertex coloured graph G admits a colourful vertex cover iff its

corresponding formula Φ(G) is satisfiable.
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Proof. Clearly Colourful Vertex Cover is equivalence to the following
integer linear programming: For all v ∈ V , find xv ∈ {0, 1} to satisfy

xu + xv ≥ 1 for each edge uv of G, and

∑

v∈Vi

xv ≤ 1 for each colour class Vi of G.

Note that a vertex v belongs to a colourful vertex cover iff xv = 1.

Now for any x, y ∈ {0, 1}, x + y ≥ 1 is equivalent to x ∨ y when we also
interpret x and y as Boolean variables. Similarly, x+ y ≤ 1 is equivalent to x ∧ y.
Furthermore, for each colour class Vi,

∑
v∈Vi

xv ≤ 1 is equivalent to xu + xv ≤ 1
for all distinct u, v ∈ Vi. It follows that Φ(G) is satisfiable iff the above integer
linear programming has a solution, and equivalently G admits a colourful vertex
cover.

The above theorem enables us to solve Colourful Vertex Cover in O(n2)
time as Φ(G) contains O(n2) binary clauses (note that x ∧ y = x ∨ y), and 2Sat

is solvable in linear time [17]. However, it is unlikely that we can obtain a linear
algorithm by reduction to 2SAT as the number of binary clauses seems quadratic
for any such reduction. To obtain a linear algorithm, we solve our problem directly
by following the idea of limited backtracking for 2SAT.

The key to our linear algorithm is the following forcing properties for edges
and colour classes. Recall that for a vertex v, v belongs to a colourful vertex cover
iff xv = 1.

1. For an edge, if one end has value 0 then the other end is forced to 1.

2. For a colour class, if one vertex inside it has value 1 then all other vertices
in the class are forced to 0.

Therefore the value of a vertex v may force values on other vertices, which may
cause a chain reaction to force values on more vertices. Of course, forcing may
cause a conflict of values for some vertices. For any b ∈ {0, 1} and vertex v, we
define Fb(v) to be the set of vertices that are forced to receive a value when xv = b.
Assign Fb(v) = ∅ if xv = b causes a conflict of value for any forced vertex, which
indicates xv 6= b. The following lemma allows us to apply self-reduction to G
whenever Fb(v) 6= ∅ for any b ∈ {0, 1}.

Lemma 4.2 For any b ∈ {0, 1} and vertex v, G admits a colourful vertex cover

iff G− Fb(v) admits one.

Proof. Let G′ = G− Fb(v) and X a colourful vertex cover of G. Since edges of
G′ can be covered by vertices in G′ only, X restricted to G′ is clearly a colourful
vertex cover of G′.

Conversely, suppose that G′ admits a colourful vertex cover X ′ and let F ′ ⊆
Fb(v) be vertices with value 1. Then F ′ is colourful and covers all edges of G
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outside G′, and hence F ′ ∪X ′ is a vertex cover of G. For each colour class V ′
i in

G′, Vi − V ′
i contains no vertex of F ′ by the definition of Fb(v). Therefore F ′ ∪X ′

is colourful.

The above lemma naturally leads us to the following algorithm which, for
clarity, is presented as a parallel algorithm. In our algorithm, we use two processors
P0 and P1 to compute F0(v) and F1(v) independently for a vertex v. For efficiency,
we stop processor Pb each time when processor Pb has obtained a nonempty Fb(v).
Our algorithm can be converted into a sequential one by the standard dovetailing
technique.

Algorithm Colourful-VC
Input: A vertex coloured graph G = (V,E; f) with f : V → {1, . . . , k}.
Output: A colourful vertex cover X of G.

while G contains a vertex v with no value do the following in parallel:
Processor P0: compute F0(v);

if F0(v) 6= ∅ then stop P1,
assign values to F0(v) accordingly,
and G← G− F0(v);

Processor P1: compute F1(v);
if F1(v) 6= ∅ then stop P0,

assign values to F1(v) accordingly,
and G← G− F1(v);

if both F0(v) and F1(v) are empty then return “No solution” and halt;
end while;
Return all vertices with value 1 as X.

We can compute Fb(v) by BFS with one of the following two actions in extend-
ing the current vertex u to other vertices. The action depends on the value of the
current vertex u.

Case xu = 0: for each edge uu′ do
if xu′ = 0 then Fb(v)← ∅ and stop

else xu′ ← 1.
Case xu = 1: for every other vertex u′ in the colour class containing u do

if xu′ = 1 then Fb(v)← ∅ and stop

else xu′ ← 0.

Theorem 4.3 For any vertex coloured graph G with k colours, it takes O(kn)
time to find a colourful vertex cover in G, if it exists.

Proof. The correctness of algorithm Colourful-VC follows from Lemma 4.2. If
both F0(v) and F1(v) are empty, then the algorithm clearly halts in time O(m+n)
as it just performs BFS twice. Otherwise one of them is not empty and we may
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assume that, without loss of generality, F0(v) is not empty and processor P0 finishes
before P1. Let T (G) denote the time of the algorithm for processing graph G, and
we have the following recurrence:

T (G) = T (G− F0(v)) +O(the number of edges covered by F0(v))

since the latter term is the time spent by processor P0 to compute F0(v). It is
obvious by induction that T (G) = O(m + n) = O(kn) as m = O(kn) for graphs
with k-vertex covers.

The above theorem implies that the colour coding method can be used to solve
Vertex Cover in FPT time. We remark that the problem becomes intractable
if we wish to minimize the size of X, or allow X to contain at most two vertices
from each colour class.

5 Concluding remarks

We have presented half a dozen new and simple FPT algorithms for the classical
Vertex Cover by using iterative compression, colour coding, and indirect cer-
tificating. These algorithms explore structural properties of the problem, which
deepens our understanding of the problem. In particular, the existence of indirect
certificates of size k/3 for Vertex Cover is quite interesting and surprising. We
hope that ideas in the paper will be useful in designing FPT algorithms for other
problems — although we have to do exhaustive search one way or another, it is
fun and challenging to do such bad things in clever ways.

The indirect certificating technique seems quite potential for designing FPT
algorithm, though several problems only are solved by the method so far. The
existence of small indirect certificates seems to have connection with kernelization:
we always have a small indirect certificate if a kernel is uniquely determined by a
kernelization algorithm. It is worthwhile to look at a problem from the perspective
of small indirect certificates, which may bring us new insight into the problem.

Problem 5.1 Find sufficient conditions for kernels to be useful for small indirect

certificates.

Of course, indirect certificates seem interesting in their own right. In particular,
certificates of size a fraction of solution size have both theoretical and practical
values. We note that certificates of size k/3 for Vertex Cover implies that
if there is a polynomial reduction from a problem Π to Vertex Cover that
preserves solution size k, then Π also admits certificates of size k/3. Using this
reduction approach, we can infer that the following two NP-hard problems both
have certificates of size at most k/3: find a weight-k truth assignment for 2Sat [14],
and delete k edges to destroy all alternating paths in an edge coloured graph [5].

Problem 5.2 What kinds of problems have certificates whose size is a fraction of

solution size?
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In connection with FPT algorithms, it is actually not hard to propose various
small indirect certificates χ. The pressing question is how to make use of χ to find
X, and the main obstacle seem to be noises caused by red elements not from χ.

Problem 5.3 For a valid (χ,X)-partition, under what conditions can we find a

k-solution in FPT time?

Coming back to Vertex Cover, we can reduce the size of certificates from
k/3 to k/3 − c for any constant c, but it seems unlike to shave off log k from k/3
as in the 2k − c log k kernelization [12] of the problem.

Problem 5.4 Does Vertex Cover have certificates of size k/d for some d > 3?

Finally, in echo to the algorithm that starts the paper, we conclude with the
following algorithm that uses random orientation to solve with probability at least
2−k the related Partial Vertex Cover problem: Find fewest vertices in a graph
G to cover at least k edges.

Randomly orient each edge to obtain a digraph ~G from G. Order vertices
~G nonincreasingly by their out-degrees, and choose vertices until the sum
of their out-degrees is at least k.
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