
Balancing Storage Efficiency and Data Confidentiality
with Tunable Encrypted Deduplication

Jingwei Li1,2, Zuoru Yang3, Yanjing Ren1, Patrick P. C. Lee3, and Xiaosong Zhang1
1Center for Cyber Security, University of Electronic Science and Technology of China

2State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences
3Department of Computer Science and Engineering, The Chinese University of Hong Kong

Abstract
Conventional encrypted deduplication approaches retain the
deduplication capability on duplicate chunks after encryp-
tion by always deriving the key for encryption/decryption
from the chunk content, but such a deterministic nature
causes information leakage due to frequency analysis. We
present TED, a tunable encrypted deduplication primitive
that provides a tunable mechanism for balancing the trade-
off between storage efficiency and data confidentiality. The
core idea of TED is that its key derivation is based on not only
the chunk content but also the number of duplicate chunk
copies, such that duplicate chunks are encrypted by distinct
keys in a controlled manner. In particular, TED allows users
to configure a storage blowup factor, under which the in-
formation leakage quantified by an information-theoretic
measure is minimized for any input workload.We implement
an encrypted deduplication prototype TEDStore to realize
TED in networked environments. Evaluation on real-world
file system snapshots shows that TED effectively balances the
trade-off between storage efficiency and data confidentiality,
with small performance overhead.

*CCS Concepts• Information systems → Cloud based
storage; Deduplication.

ACM Reference Format:
Jingwei Li, Zuoru Yang, Yanjing Ren, Patrick P. C. Lee, and Xi-
aosong Zhang. 2020. Balancing Storage Efficiency and Data Con-
fidentiality with Tunable Encrypted Deduplication. In Fifteenth
European Conference on Computer Systems (EuroSys ’20), April 27–
30, 2020, Heraklion, Greece. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3342195.3387531

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys’20, April 27–30, 2020, Heraklion, Greece
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6882-7/20/04. . . $15.00
https://doi.org/10.1145/3342195.3387531

1 Introduction
Outsourcing storagemanagement to the cloud is appealing to
enterprises and individuals to cope with the unprecedented
growth of data in the wild [34]. Practical storage outsourc-
ing solutions should fulfill two goals: (i) storage efficiency,
which consumes the least possible storage footprints to save
outsourcing costs, and (ii) data confidentiality, which pro-
tects outsourced storage from the unauthorized access by
malicious users or even the cloud providers that host the
outsourcing services.

To achieve both goals, we explore encrypted deduplication
for outsourced storage. Deduplication is a popular data re-
duction technique to achieve storage efficiency. It removes
duplicate data at the granularity of chunks and keeps only
one physical copy of all duplicate chunks. Encrypted dedupli-
cation further augments deduplication with encryption, such
that its goal is to transform the original pre-deduplicated
chunks (called plaintext chunks) into the encrypted chunks
(called ciphertext chunks) that will be kept in deduplicated
storage. However, conventional symmetric-key encryption
(SKE) is incompatible with deduplication, as it uses a distinct
key (e.g., obtained via random key generation) for encryp-
tion/decryption. This causes duplicate plaintext chunks to
be encrypted into distinct ciphertext chunks due to distinct
keys, thereby prohibiting deduplication on the ciphertext
chunks. Bellare et al. [16] propose a cryptographic primitive
called message-locked encryption (MLE) to formalize the key
derivation in encrypted deduplication, in which each plain-
text chunk is encrypted by a key derived from the chunk
content, so that duplicate plaintext chunks are encrypted
into identical ciphertext chunks for deduplication. Examples
of MLE constructions include convergent encryption [26]
and server-aided MLE [15] (see details in §2.1).
However, existing MLE constructions remain vulnerable

to information leakage, as they build on deterministic encryp-
tion to always map duplicate plaintext chunks into identical
ciphertext chunks through content-based key derivation; this
is in contrast to SKE, in which a plaintext chunk is mapped
to a distinct ciphertext chunk subject to a distinct key. The
deterministic nature of MLE inevitably leaks the frequency
(i.e., number of duplicate chunk copies) distribution of the
plaintext chunks, making encrypted deduplication vulnera-
ble to the frequency analysis attack [44] that examines the
ciphertext chunks and infers their original plaintext chunks;

https://doi.org/10.1145/3342195.3387531
https://doi.org/10.1145/3342195.3387531

EuroSys’20, April 27–30, 2020, Heraklion, Greece Li et al.

hence, data confidentiality cannot be fully achieved.
Thus, encrypted deduplication poses a dilemma in choos-

ing a proper cryptographic primitive: MLE achieves storage
efficiency via deduplication but introduces frequency leakage
due to its deterministic nature, while SKE is robust against
frequency leakage but prohibits deduplication. Some existing
approaches resolve the dilemma to some extent, but they
rely on either expensive cryptographic primitives that are
impractical, or simple heuristics with limited protection and
configurability guarantees (§2.4). To our knowledge, there
is no rigorous treatment in the literature of the trade-off
between storage efficiency and data confidentiality in en-
crypted deduplication, and this motivates our work.
We present TED, a cryptographic primitive for enabling

tunable encrypted deduplication in outsourced storage. TED
provides a tunable mechanism that allows users to balance
the trade-off between storage efficiency and data confiden-
tiality. Its core idea is to augment the key derivation in MLE,
such that the key used for encrypting/decrypting a chunk is
derived from not only the chunk content but also the chunk
frequency, so as to allow duplicate plaintext chunks to be
encrypted by distinct keys (i.e., relaxing the deterministic en-
cryption nature). To achieve storage efficiency, TED derives
a distinct key only when the chunk frequency increases (i.e.,
more duplicates accumulate) by some factor, so that a large
portion of duplicate plaintext chunks are still encrypted into
identical ciphertext chunks to maintain the deduplication
effectiveness.

Clearly, TED introduces a storage blowup over exact dedu-
plication (i.e., all duplicates are removed by deduplication).
Nevertheless, by limiting a small storage blowup, TED still
maintains high storage savings via “near-exact” deduplica-
tion. For example, practical backup workloads under dedupli-
cation can achieve a storage saving of 90% (or a 10× dedupli-
cation ratio) [66]. If we limit the storage blowup to 20% over
exact deduplication, then the storage saving reduces to 88%
(or an 8.3× deduplication ratio), which remains significant.

To realize the idea of tuning the storage-confidentiality
trade-off in encrypted deduplication, TED builds on three
key design techniques:

• Sketch-based frequency counting, which leverages a com-
pact data summary structure called sketch [23] to estimate
the frequencies of all chunks with bounded errors. Using a
sketch not only reduces the memory usage for frequency
counting, but also protects the chunk identities during
frequency counting.
• Probabilistic key generation, which non-deterministically
derives keys for duplicate plaintext chunks from a candi-
date set of keys to create distinct sequences of ciphertext
chunks, while preserving the deduplication effectiveness.
This avoids encrypting identical files into the same se-
quence of ciphertext chunks, and hence protects the infor-
mation leakage of identical files.

• Automated parameter configuration, which formulates the
parameter configuration problem as an optimization prob-
lem that minimizes the information leakage for an input
workload subject to a configurable storage blowup factor
over exact deduplication; here, the leakage is quantified
by the information-theoretic measure Kullback-Leibler dis-
tance (KLD) (or relative entropy) [40] with respect to the
uniform distribution of chunk frequencies. This allows
users to readily configure a storage blowup factor based
on their affordable storage overhead, instead of tuning any
non-intuitive system-level parameter for balancing the
storage-confidentiality trade-off for different workloads.
We implement a proof-of-concept encrypted deduplica-

tion prototype called TEDStore that realizes TED for out-
sourced storage applications. We conduct extensive trace-
driven evaluation on both TED and TEDStore using two real-
world datasets of file system snapshots [1, 52]. Compared
to the two baseline primitives SKE and MLE, TED reduces
the KLD of MLE by up to 84.7% with a configurable storage
blowup factor of 1.2 (i.e., 20% more storage space over exact
deduplication), while achieving high storage savings over
SKE. We also show that the configurable storage blowup fac-
tormatches well the actual storage blowup. Finally, TEDStore
achieves high upload/download performance in networked
storage, while TED only incurs small overhead and is not
the performance bottleneck in TEDStore.

We now release the source code of both TED and TEDStore
at http://adslab.cse.cuhk.edu.hk/software/ted.

2 Problem and Motivation
We present the background on both deduplication and en-
crypted deduplication (§2.1). We show the encrypted dedupli-
cation architecture (§2.2) and describe the threat model (§2.3).
Finally, we discuss the limitations of existing approaches in
addressing the threat model (§2.4).

2.1 Basics
Deduplication. Deduplication is a coarse-grained compres-
sion technique that eliminates duplicate data copies in stor-
age. Our work focuses on chunk-based deduplication, which
divides file data into a sequence of variable-size chunks (e.g.,
4-8 KB each) [28] and uniquely identifies each chunk by the
cryptographic hash (called fingerprint) of the chunk content
(the hash collision of two distinct chunks is highly unlikely
in practice [19]). Only one physical copy of duplicate chunks
is stored, while other duplicate chunks are stored as small-
size pointers that refer to the physical chunk. Deduplica-
tion is shown to achieve huge storage savings in backups
[47, 66, 72], virtual machine images [35], and file system
snapshots [52, 65], and is adopted by commercial cloud ser-
vices (e.g., Dropbox and Memopal) [32].
Encrypted deduplication. As described in §1, encrypted
deduplication preserves the deduplication effectiveness on ci-

http://adslab.cse.cuhk.edu.hk/software/ted

Balancing Storage Efficiency and Data Confidentiality with Tunable Encrypted Deduplication EuroSys’20, April 27–30, 2020, Heraklion, Greece

phertext chunks that are encrypted from duplicate plaintext
chunks. Conventional encrypted deduplication approaches
can be characterized via the symmetric-key encryption prim-
itive called message-locked encryption (MLE) [16], which
formalizes how the key of each chunk is derived from the
chunk content for symmetric encryption/decryption. One
well-known MLE construction is convergent encryption (CE)
[26], in which the key of a chunk is set as the chunk fin-
gerprint. CE has been realized and extensively evaluated in
many systems (e.g., [5, 8, 24, 26, 37, 58, 64, 68]). However,
CE is vulnerable to offline brute-force attacks [15], as an ad-
versary can compute the fingerprints (via the cryptographic
hash of the chunk content) for all candidate plaintext chunks
in a brute-force manner and check if a chunk is encrypted
into any existing ciphertext chunk. Thus, the security of MLE
builds on the assumption that the chunks are derived from
an unpredictable message space, so that offline brute-force
attacks become infeasible [15].

To defend against offline brute-force attacks for the chunks
derived from a predictable message space, DupLESS [15]
realizes server-aided MLE, in which the key generation is
controlled by a dedicated key manager. Specifically, a client
requests the key of a chunk from the key manager by submit-
ting the chunk fingerprint. The key manager then derives
the key not only on the chunk fingerprint, but also on a
global secret owned by the key manager. If the global secret
is secure, an adversary cannot feasibly compute the keys
of all candidate plaintext chunks; even if the global secret
is compromised, the security of server-aided MLE reduces
to that of the original MLE. To further secure the key gen-
eration process, DupLESS proposes two mechanisms. First,
when a client requests the secret key of a chunk, it submits a
“blinded” fingerprint via the oblivious pseudo-random function
(OPRF) [54] to the key manager, such that the key manager
can return the same key for identical fingerprints, yet it does
not know the original fingerprint. Second, the key manager
rate-limits the key generation requests to protect against
online brute-force attacks by malicious clients that attempt
to issue many key generation requests.

Frequency analysis. Both the original MLE [16] and server-
aided MLE [15] build on deterministic encryption, meaning
that each plaintext chunk is always mapped to a ciphertext
chunk. It inevitably leaks the frequency (i.e., number of dupli-
cate chunk copies) of each chunk, thereby making encrypted
deduplication vulnerable to frequency analysis.
To launch frequency analysis against encrypted dedupli-

cation, an adversary first accesses an auxiliary dataset [55];
for example, the auxiliary dataset can refer to the plaintext
chunks of some prior versions of backups [44]. Previous stud-
ies show that the auxiliary dataset can be obtained via public
data releases [30, 55], security breaches [18], or storage de-
vice theft [33]. The adversary also accesses a set of ciphertext
chunks as the attack object (e.g., the latest version of back-

Deduplication

Provider
Key Manager

Clients

Chunk … Chunk
Physical
Storage

Tapped by
adversary

Figure 1. An encrypted deduplication architecture. An adversary
may have access to the key manager and the provider to monitor
the behaviors of their operations (§2.3).

ups [44]). It then ranks the plaintext chunks and ciphertext
chunks separately by their respective frequencies. Finally, it
reverts each ciphertext chunk to the plaintext chunk in the
same frequency rank.
Frequency analysis is a historically well-known crypt-

analysis attack [6]. It is recently shown to cause substantial
information leakage in encrypted databases [18, 30, 55] as
well as encrypted deduplication [44]. Our goal is to achieve
data confidentiality against frequency analysis.

2.2 Architecture
Our work builds on the server-aided MLE [15] architecture
(Figure 1) with three entities: (i) multiple clients, which pro-
vide interfaces for applications to access file data under en-
crypted deduplication; (ii) the key manager, which performs
key generation for each client; and (iii) the storage provider (or
provider in short), which provides outsourced deduplicated
storage. To prevent side-channel leakage (e.g., a malicious
client can infer the existence of a chunk by checking if the
chunk can be deduplicated) [32, 53], we perform deduplica-
tion in the provider, so that malicious clients cannot infer
the deduplication patterns via client-side deduplication [32].
To upload a file, a client divides file data into chunks. It

generates the key for each chunk via the interaction with
the key manager, encrypts each chunk by the corresponding
key, and uploads the chunk to the provider. In addition, for
file reconstruction, the client generates a file recipe that lists
the chunk fingerprints and the chunk sizes based on the
chunk order in the file, as well as a key recipe that keeps the
keys for all chunks. It encrypts both the file recipe and the
key recipe with a per-client master key for protection, and
uploads themwith the ciphertext chunks to the provider. The
provider performs deduplication on the ciphertext chunks. It
maintains a fingerprint index, a key-value store that tracks the
fingerprints of physical chunks for duplicate detection. Note
that the provider does not apply deduplication to metadata;
instead, it directly keeps both file recipes and key recipes (in
encrypted forms) in physical storage.
To download a file, the client first retrieves both the file

recipe and the key recipe from the provider, and decrypts
them with its master key. It then retrieves the ciphertext
chunks from the provider based on the file recipe, and de-
crypts them with the keys stored in the key recipe.

EuroSys’20, April 27–30, 2020, Heraklion, Greece Li et al.

2.3 Threat Model

Adversarial capabilities.We consider an honest-but-curious
(i.e., no modification to the system protocol) but knowledge-
able adversary that has the access to some auxiliary datasets
and knows the frequency distribution of plaintext chunks.
The adversary aims to identify the original content of the ci-
phertext chunks in remote storage by tapping into the entry
points of both the provider and the key manager (Figure 1):
• It has the access to the provider and eavesdrops the cipher-
text chunks being written to the provider before deduplica-
tion, so as to learn the frequency of each ciphertext chunk
and launch frequency analysis.
• It has the access to the key manager and eavesdrops both
the key generation requests sent from the clients and the
replies from the key manager. If it learns the global secret
of the key manager, the security reduces to that of the
original MLE (§2.1).

Adversarial assumptions. Our threat model makes the fol-
lowing assumptions: (i) the communication channels among
the clients, the key manager, and the provider are protected
by SSL/TLS against tampering; (ii) the key manager rate-
limits each client’s key generation requests, so as to defend
against online brute-force attacks [15] (§2.1); (iii) both the
file recipe and key recipe of each file are secure as they are
protected by each client’s master key (§2.2); and (iv) in order
to ensure data availability, we can deploy remote auditing
[12, 36] for data integrity, as well as deduplication-aware
secret sharing [45] across multiple storage sites for fault
tolerance.

2.4 Limitations of Existing Approaches
Several encrypted deduplication designs can defend against
frequency analysis. Here, we review four such designs.
• Random MLE [4]: It encrypts each plaintext chunk with
a random key. To support deduplication, it attaches each
ciphertext chunk with a (random) payload for detecting if
the corresponding underlying plaintext chunk is identical
via the non-interactive zero knowledge (NIZK) proofs.
• Interactive MLE [14]: It also encrypts each plaintext chunk
with a random key as in random MLE. To support dedu-
plication, it leverages fully homomorphic encryption (FHE)
to implement an evaluation function for checking if the
ciphertext chunks are derived from duplicate plaintext
chunks without decrypting the ciphertext chunks.
• Layered encryption [63]: It first encrypts each plaintext
chunk with MLE, and then encrypts the resulting cipher-
text chunkwith the threshold public-key cryptosystem, such
that the decryption key for the ciphertext chunk is trans-
formed into multiple random shares that are sent to the
provider. When the provider receives a threshold number
of shares, it can rebuild the decryption key, recover the
ciphertext chunk, and perform deduplication as in MLE.

• MinHash encryption [44]: It groups multiple consecutive
plaintext chunks into segments. For each segment, it de-
rives a key as the minimum fingerprint of all chunks in
the segment, and encrypts all the chunks with the same
key. For backup workloads, the segments are often similar
with a large fraction of duplicate plaintext chunks [17], so
the keys (i.e., the minimum fingerprints) for similar seg-
ments are likely the same (due to Broder’s theorem [21]).
Thus, most duplicate chunks are encrypted by the same
key, making deduplication viable after encryption.

Random MLE, interactive MLE, and layered encryption
provide semantic security [38] guarantees for plaintext chunks,
as the encryption is no longer deterministic (i.e., the same
plaintext chunk is encrypted to some “random” outputs). For
MinHash encryption, although similar segments likely have
the same key, a small fraction of duplicate plaintext chunks
in different segments may still be encrypted by different keys.
This alters the frequency ranking of ciphertext chunks, and
is empirically shown to mitigate the severity of frequency
analysis [44]. However, the above designs still face several
practical limitations.

• Limitation 1: Expensive cryptographic primitives. Random
MLE and interactive MLE build on expensive primitives
(i.e., NIZK proofs and FHE, respectively) that are theoreti-
cally proven but are not readily implemented in practice.
Layered encryption builds on the threshold public-key
cryptosystem, which is less efficient than the symmetric
key cryptosystem when encrypting large data.
• Limitation 2: Limited protection.MinHash encryption builds
on the file similarity assumption [17] for its deduplication
effectiveness, so its storage efficiency may not hold for
general workloads. More importantly, the minimum chunk
fingerprints in segments have limited randomness (oth-
erwise, the deduplication effectiveness will be lost), so
MinHash encryption only slightly breaks the determin-
istic nature of MLE and provides no security guarantees
against frequency analysis.
• Limitation 3: Limited configurability. All the designs do
not provide a configurable mechanism to quantify the
trade-off between storage efficiency and the resilience
against frequency analysis. For example, MinHash encryp-
tion disturbs the frequency ranking of ciphertext chunks
by sacrificing storage efficiency (e.g., the duplicate plain-
text chunks in different segments are encrypted by dif-
ferent keys and cannot be deduplicated after encryption).
However, it derives the keys purely from the chunk content
(i.e., the minimum fingerprints of segments), and cannot
control how much storage efficiency is lost.

Some defense approaches (e.g., [39, 41, 42]) protect en-
crypted databases against frequency analysis. However, they
are not applicable to encrypted deduplication (§6).

Balancing Storage Efficiency and Data Confidentiality with Tunable Encrypted Deduplication EuroSys’20, April 27–30, 2020, Heraklion, Greece

3 TED Design
3.1 Design Goals
TED is an encrypted deduplication primitive that aims for
the following design goals.
• Storage efficiency. TED applies deduplication to remove
duplicate chunks from storage.
• Data confidentiality. TED protects deduplicated storage
from unauthorized access through encryption. It also miti-
gates the information leakage due to frequency analysis.
• Configurability. TED allows a tunable trade-off between
storage efficiency and data confidentiality, such that the
information leakage is minimized subject to a configurable
storage blowup factor.
• Low performance overhead. TED incurs low performance
overhead in encrypted deduplication deployment.

Application scenario. TED mainly targets backup work-
loads, which have high degrees of content duplicates that
can be effectively removed via deduplication [7, 66]. It is ap-
plicable for an organization that plans to securely outsource
the storage management for its clients to a third-party cloud
storage provider. The organization maintains a key man-
ager for the key management of its clients and configures
the storage-confidentiality trade-off subject to an affordable
storage blowup factor. It also deploys a virtual machine or
container instance in the cloud to perform deduplication
on the data uploaded by clients for storage savings. Such a
deployment allows the organization to achieve secure and
space-efficient outsourced storage.

3.2 Design Overview
TED’s principle is to derive the key of each plaintext chunk
(denoted by𝑀) based on two additional inputs in addition
to its content: (i) its current frequency 𝑓 , which specifies the
number of duplicate copies of𝑀 that have been uploaded by
all clients, and (ii) the balance parameter 𝑡 , which controls the
trade-off between frequency protection and deduplication
effectiveness. The key, denoted by 𝐾 , of𝑀 is generated by
the key manager (§2.2) as follows:

𝐾 = H(𝜅 ∥ 𝑃 ∥ ⌊𝑓 /𝑡⌋), (1)
where H(·) is a cryptographic hash function, 𝜅 is the global
secret owned by the key manager, 𝑃 is the fingerprint of𝑀
(derived from the chunk content of𝑀), ∥ is the concatenation
operator, and ⌊𝑓 /𝑡⌋ is the maximum integer smaller than
𝑓 /𝑡 .
Note that 𝑓 is cumulative and increases as more duplicates

are detected. The key 𝐾 will be updated as the integer ⌊𝑓 /𝑡⌋
increases. Thus, the duplicates of 𝑀 will be encrypted by
different keys in general depending on the value of 𝑡 . If 𝑡 = 1,
each duplicate of𝑀 has a distinct 𝐾 and TED reduces to SKE;
if 𝑡 →∞, all duplicates of𝑀 have the identical 𝐾 and TED
reduces to MLE. Intuitively, 𝑡 can be viewed as themaximum
number of duplicate copies for a ciphertext chunk.

However, realizing TED’s idea is not trivial. We pose three
challenges, which we address in the following subsections.

• Q1: How does the key manager obtain the frequencies of
all chunks? The key manager needs to know the current
frequency of each chunk for key generation. A challenge
is that given the huge number of chunks being processed,
the frequency counting in the key manager must incur low
overhead. Another challenge is that if the key manager
uses blinded key generation as in DupLESS [15], in which
the blinded fingerprints look like “random” values to the
key manager (§2.1), it cannot infer the original fingerprints
to count the chunk frequencies by fingerprints.
• Q2: How should the key manager generate the key of each
chunk? The key generation in Equation (1), unfortunately,
raises a security issue: for identical files with the same se-
quence of chunks, Equation (1) will return the same keys
that lead to also the same sequence of ciphertext chunks,
thereby allowing an adversary to infer if two encrypted
files are originally identical. Thus, the key generation must
produce distinct sequences of ciphertext chunks for identi-
cal files, while preserving the deduplication effectiveness.
• Q3: How should the balance parameter be configured? The
balance parameter 𝑡 determines the storage blowup over
exact deduplication. However, the same value of 𝑡 may lead
to significantly different storage blowups across workloads.
Thus, it is critical to automatically configure 𝑡 to make the
actual storage blowup controllable for different workloads.

3.3 Sketch-based Frequency Counting
To address Q1, TED implements the Count-Min Sketch (CM-
Sketch) [23] in the key manager for the frequency estimation
of each chunk with fixed-size memory usage. A CM-Sketch
is composed of a two-dimensional array with 𝑟 rows of 𝑤
counters each. We configure 𝑟 pairwise independent hash
functions {ℎ𝑖 (·)}𝑟𝑖=1, such that each hash function ℎ𝑖 maps a
chunk to a counter (indexed from 1 to𝑤) in row 𝑖 (1 ≤ 𝑖 ≤
𝑟). For each input chunk, we increment each of its hashed
counters by one. To recover the frequency of a chunk, we use
the minimum value of the 𝑟 hashed counters as an estimate.
Given 𝑟 and 𝑤 , the estimated frequency provably incurs a
bounded error with a high probability [23]. For example, our
trade-off analysis (§5.2) by default sets 𝑟 = 4 with 𝑤 = 225
4-byte counters each, so the memory usage is 512MB. Also,
the estimation error is bounded within 𝑛 × 𝑒/225 with a
probability of at least 1 − 1/4𝑒 , where 𝑒 is Euler’s number
and 𝑛 is the total number of chunks being counted [23].
In TED, for each plaintext chunk 𝑀 , a client sends the

hashes {ℎ1 (𝑀), ℎ2 (𝑀), . . . , ℎ𝑟 (𝑀)} to the keymanager, which
updates the CM-Sketch accordingly. The key manager es-
timates the current frequency of𝑀 and uses the estimated
frequency to derive the key.

The advantages of using the CM-Sketch are two-fold. First,
it limits the memory usage for tracking the frequencies of

EuroSys’20, April 27–30, 2020, Heraklion, Greece Li et al.

all chunks, while the errors are provably bounded. Second,
the approximate counting protects the chunk information
from the key manager, which is a security requirement in
DupLESS [15] (§2.1). Each ℎ𝑖 (·) is a short hash function that
returns a counter index ranging from 1 to 𝑤 . Since 𝑤 is
generally small compared to the range of fingerprint values,
each ℎ𝑖 (·) leads to many hash collisions (i.e., multiple chunks
are mapped to the same short hashes). Thus, the keymanager
cannot readily guess a chunk from the short hashes.

3.4 Probabilistic Key Generation
To address Q2, TED realizes a probabilistic key generation
approach that can encrypt identical files (with the same
sequence of plaintext chunks) non-deterministically into
distinct sequences of ciphertext chunks, while preserving
the deduplication effectiveness.

Our insight is to randomly select the key for a chunk from
a set of candidates, instead of returning the same key as in
Equation (1). Specifically, for each plaintext chunk 𝑀 , let
𝑥 = ⌊𝑓 /𝑡⌋, where 𝑓 is the current frequency of 𝑀 and 𝑡 is
the balance parameter. Upon receiving the hashes of𝑀 , the
key manager computes a key seed candidate 𝑘𝑥 as:

𝑘𝑥 = H(𝜅 ∥ ℎ1 (𝑀) ∥ ℎ2 (𝑀) . . . ∥ ℎ𝑟 (𝑀) ∥ 𝑥). (2)
It then uniformly selects a key seed from the candidate set
{𝑘0, 𝑘1, . . . , 𝑘𝑥 }:

𝑘
$←− {𝑘0, 𝑘1, . . . , 𝑘𝑥−1, 𝑘𝑥 }. (3)

The client finally derives the key of𝑀 as
𝐾 = H(𝑘 ∥ 𝑃), (4)

where 𝑃 is the fingerprint of𝑀 . Note that TED does not use
𝑘 as the key of 𝑀 in order to prevent the key manager, as
well as an adversary that can eavesdrop the replies of the
key manager (§2.3), from directly accessing the keys.
Intuitively, as we observe more duplicates of 𝑀 (i.e., 𝑓

increases), the recent duplicates of 𝑀 are encrypted based
on some of the old key seeds from {𝑘0, 𝑘1, . . . , 𝑘𝑥 } that have
been used before. Thus, TED maintains the deduplication
effectiveness by allowing some duplicates to be protected
by the same key seed. Meanwhile, the generation of cipher-
text chunks is non-deterministic, as they are derived from
randomly selected key seeds (as opposed to the determinis-
tic key generation in Equation (1)). In general, the plaintext
chunks with higher frequencies will be encrypted to a more
diverse set of ciphertext chunks, as more candidate key seeds
can be chosen as 𝑓 increases.

3.5 Automated Parameter Configuration
To address Q3, instead of letting users directly configure
the balance parameter 𝑡 , which is a system-level parameter
that is less intuitive for general users to choose for differ-
ent workloads, TED automatically configures 𝑡 by solving
an optimization problem for an input workload subject to

the affordable storage overhead specified by users. Specif-
ically, users can indicate the storage overhead over exact
deduplication via a storage blowup factor 𝑏, defined as the
ratio between the physical storage size due to TED and that
due to exact deduplication. Typically, 𝑏 ≥ 1; if 𝑏 = 1, then
TED reduces to MLE (which supports exact deduplication).
The optimization goal of TED is to minimize the information
leakage for an input workload subject to the configurable
parameter 𝑏, and identify the corresponding 𝑡 .
Optimizationproblem.Here, we use the number of chunks
as an approximation of the physical storage size. Specifically,
let 𝑛 be the total number of unique plaintext chunks {𝑀𝑖 }𝑛𝑖=1,
such that each (unique) plaintext chunk𝑀𝑖 has a frequency
𝑓𝑖 (i.e., the number of duplicates of𝑀𝑖). Without loss of gen-
erality, let 𝑓1 ≤ . . . ≤ 𝑓𝑛 . Let 𝑛∗ be the total number of unique
ciphertext chunks {𝐶𝑖 }𝑛

∗
𝑖=1, where 𝑛∗ = 𝑛 × 𝑏 (assuming that

both ciphertext and plaintext chunks have the same average
chunk size), such that each (unique) ciphertext chunk𝐶𝑖 has
a frequency 𝑓 ∗𝑖 . Each duplicate copy of plaintext chunk𝑀𝑖

is encrypted into the ciphertext chunk 𝐶𝑖 (for 1 ≤ 𝑖 ≤ 𝑛) or
another ciphertext chunk 𝐶 𝑗 for some 𝑛 + 1 ≤ 𝑗 ≤ 𝑛∗. In
other words, a plaintext chunk is not always mapped to the
same ciphertext chunk as in MLE, as it may also be mapped
to some other ciphertext chunks to make the encryption
non-deterministic.

We leverage the information-theoretic measure Kullback-
Leibler distance (KLD) [40] to characterize how the frequency
distribution of the ciphertext chunks differs from the uniform
distribution (i.e., how well TED is secure against frequency
leakage); note that KLD is also used to measure the frequency
leakage in encrypted databases [41]. Let 𝑝∗𝑖 = 𝑓 ∗𝑖 /

∑𝑛∗
𝑖=1 𝑓

∗
𝑖 be

the probability density function corresponding to 𝑓 ∗𝑖 . Then
the KLD of the frequency distribution of ciphertext chunks
(with respect to the uniform distribution) is:

𝐾𝐿𝐷 =
∑𝑛∗

𝑖=1
𝑝∗𝑖 log

𝑝∗𝑖
1/𝑛∗ = log𝑛∗ +

∑𝑛∗

𝑖=1
𝑝∗𝑖 log𝑝∗𝑖 . (5)

A smaller KLD (whose minimum is zero) implies that the
frequency distribution of the ciphertext chunks is closer to
the uniform distribution (i.e., less frequency leakage).
Our goal is to find {𝑓 ∗𝑖 }𝑛

∗
𝑖=1 by solving the following opti-

mization problem:
minimize 𝐾𝐿𝐷

subject to
∑𝑛∗

𝑖=1
𝑓 ∗𝑖 =

∑𝑛

𝑖=1
𝑓𝑖 ,

0 ≤ 𝑓 ∗𝑖 ≤ 𝑓𝑖 ∀𝑖 ∈ [1, 𝑛],
𝑓𝑖 , 𝑓

∗
𝑖 are integers ∀𝑖 ∈ [1, 𝑛] .

(6)

The constraints ensure that the total frequency of all cipher-
text chunks is preserved as that of all plaintext chunks, the
frequency of each plaintext chunk𝑀𝑖 is no less than that of
the corresponding ciphertext chunk𝐶𝑖 (as𝑀𝑖 may bemapped
to multiple distinct ciphertext chunks), and the frequencies
are integers.

Balancing Storage Efficiency and Data Confidentiality with Tunable Encrypted Deduplication EuroSys’20, April 27–30, 2020, Heraklion, Greece

Optimization solution. Since {𝑓 ∗𝑖 }𝑛
∗

𝑖=1 are integers, the opti-
mization problem is anmixed integer non-linear optimization
problem, which is known to be NP-hard [56]. Thus, we relax
the integer constraints by allowing {𝑓 ∗𝑖 }𝑛

∗
𝑖=1 to be floating-

point numbers, and round the results into integers. With
the relaxations, the problem becomes a convex optimization
problem. We can show that the optimal solution (which can
be found based on the simplex algorithm [20]) is:{

𝑓 ∗𝑖 = 𝑓𝑖 , 1 ≤ 𝑖 ≤ 𝑚,
𝑓 ∗𝑖 =

∑𝑛
𝑗=𝑚+1 𝑓𝑗
𝑛∗−𝑚 , 𝑚 + 1 ≤ 𝑖 ≤ 𝑛∗,

(7)

where𝑚 is the maximum integer such that 𝑓𝑚 ≤
∑𝑛

𝑗=𝑚+1 𝑓𝑗
𝑛∗−𝑚 .

Since 𝑓1 ≤ . . . ≤ 𝑓𝑛 , we also ensure that 𝑓 ∗1 ≤ 𝑓 ∗2 ≤ . . . 𝑓 ∗𝑛∗ .
Intuitively, the optimal solution caps the frequencies of the
top-frequent ciphertext chunks, so the frequency distribution
of the ciphertext chunks is close to the uniform distribution.

Since 𝑡 controls the maximum number of duplicate copies
among all ciphertext chunks (§3.2), we configure 𝑡 as themax-
imum frequency in {𝑓 ∗𝑖 }𝑛

∗
𝑖=1 to approximate the frequency dis-

tribution of the ciphertext chunks as shown in Equation (7):

𝑡 =

⌈∑𝑛
𝑗=𝑚+1 𝑓𝑗

𝑛∗ −𝑚

⌉
. (8)

Configuring 𝑡 in practice. In TED, the key manager solves
the optimization problem and obtains 𝑡 for key seed genera-
tion (§3.4). Note that the optimization solution depends on
the frequency distribution of plaintext chunks. While includ-
ing all plaintext chunks in frequency counting returns an
accurate frequency distribution, it inevitably incurs a long
processing delay, since a client cannot start the chunk en-
cryption until the key manager finishes frequency counting
and returns the key seeds.
Thus, we periodically update 𝑡 based on the frequency

distribution of a batch of plaintext chunks. Specifically, we
initialize 𝑡 = 1. A client issues the key generation requests
for the plaintext chunks on a per-batch basis, and the key
manager solves the optimization problem and updates 𝑡 for
each batch. Once the client receives the key seeds for a batch
of chunks from the key manager, it derives the keys for the
chunks and performs chunk encryption, and in the mean-
time, it issues the key generation requests for the next batch
of chunks. Thus, a client can perform both key generation
and chunk encryption in parallel. The batch size is config-
urable; choosing a larger batch size returns a more accurate
frequency distribution, but delays chunk processing. By de-
fault, we set the batch size as 48,000, which implies that
each update of 𝑡 is based on around 0.37% of input data for a
100GB file (assuming that the average chunk size is 8 KB).

3.6 Security Discussion
Finally, we discuss the security implications of TED via a
quantitative analysis. Specifically, we quantify the frequency

leakage of a set of ciphertext chunks by analyzing the like-
lihood that an adversary distinguishes the frequency dis-
tribution of the set of ciphertext chunks from a uniform
distribution; if the likelihood is low, we argue that the fre-
quency leakage is limited. We consider an adversary that
accesses a number of sampled ciphertext chunks that are
chosen from either a frequency distribution derived from
an encryption scheme (e.g., SKE, MLE, MinHash encryption
[44], or TED) or a uniform distribution; however, the adver-
sary does not know exactly which distribution is used. The
adversarial goal is to guess the distribution from which the
sampled ciphertext chunks are chosen. The more sampled
ciphertext chunks that the adversary can access, the more
likely it is to successfully guess the correct distribution. The
success probability of the guess can be approximated as [13]:

𝑃 ≈ 1 − Φ(−
√
2𝑆 × 𝐾𝐿𝐷

2), (9)

where 𝑆 is the number of sampled ciphertext chunks, and
Φ(·) is the cumulative distribution function of the standard
normal distribution. If the KLD is zero (e.g., in SKE), then
the success probability is approximately 0.5, implying that
the adversary has no advantage over a random guess.

In general, no encrypted deduplication scheme (including
MLE, MinHash encryption, and TED) can suppress the suc-
cess probability 𝑃 as low as in SKE without sacrificing the
deduplication effectiveness. Nevertheless, TED effectively re-
duces the KLD (with respect to the uniform distribution) and
hence increases the difficulty for the adversary to correctly
guess the frequency distribution of ciphertext chunks. For
example, referring to Experiment A.1 in §5.2, if we set the
storage blowup factor 𝑏 = 1.2, then MLE, MinHash encryp-
tion, and TED have a KLD of 1.72, 1.35, and 0.26, respectively,
implying that the adversary needs to access 1.72/0.26 ≈ 6.6×
and 1.35/0.26 ≈ 5.2× sampled ciphertext chunks to achieve
the same success probability of the guess against TED when
compared to MLE and MinHash encryption, respectively.
Our quantitative analysis provides one possible explana-

tion of how TED is less vulnerable to frequency analysis than
existing encrypted deduplication schemes (i.e., an adversary
needs to access more sampled ciphertext chunks in TED to
achieve the same attack effectiveness against MLE and Min-
Hash encryption). However, it remains an open question of
how to quantify an acceptable trade-off between storage effi-
ciency and data confidentiality in real deployment; in other
words, how users should configure a proper storage blowup
factor in practical encrypted deduplication deployment to
achieve a reasonable level of data confidentiality. We pose a
more in-depth analysis of the security implications of TED
as our future work.

4 Implementation
To show the applicability of TED, we built an encrypted
deduplication prototype called TEDStore (based on Figure 1

EuroSys’20, April 27–30, 2020, Heraklion, Greece Li et al.

in §2.2), which realizes TED for chunk encryption. TEDStore
is written in C++ on Linux. It uses OpenSSL 1.1.1c [3] for
cryptographic operations andMurmurHash3 [9] for the hash
operations in key generation (§3.4). Our prototype contains
around 4.5K lines of code.
Deduplication. Each client now implements content-defined
chunking based on Rabin fingerprinting [60], which takes the
minimum, average, and maximum chunk sizes as input (by
default, we set them as 4KB, 8 KB, and 16KB, respectively)
and computes a rolling hash over a window of chunks to iden-
tify chunk boundaries. TEDStore performs deduplication in
the provider (§2.2). The provider implements the fingerprint
index as a key-value store based on LevelDB [2] to map the
fingerprint of each ciphertext chunk to the physical address
where the ciphertext chunk is stored. To mitigate the disk
access overhead, the provider packs the unique chunks (on
the order of KB each) in fixed-size containers (on the order
of MB each), such that the I/O operations are in units of
containers [46]. We now fix the container size as 8MB.
Key generation. Recall that a client derives the key for a
chunk by sending 𝑟 short hashes (now 𝑟 = 4) to the key
manager (§3.4). To efficiently generate the short hashes, the
client computes a 128-bit hash (via Murmurhash3) and di-
vides the hash result into four short hashes (i.e., only one
hash computation). By default, we choose SHA-256 for H(.)
and AES-256 for chunk encryption, i.e., the key manager
generates the key seed via SHA-256 (Equation (2)), while
the client derives the secret key of each chunk via SHA-256
(Equation (4)) and encrypts the chunk via AES-256.
Performance optimization. Our TEDStore prototype ex-
ploits simple performance optimization techniques. For ex-
ample, it usesmulti-threading, inwhich the client parallelizes
the processing of chunking, encryption, and uploads via mul-
tiple threads, while the key manager and the provider serve
the requests from multiple clients with different threads.
It also combines the transmissions of multiple small-size
data units (e.g., hashes in key generation and chunks in
uploads/downloads) into a single transmission to mitigate
network overhead.
Prototype limitations. Our TEDStore prototype currently
focuses on only the deduplication of data chunks, but not
metadata (e.g., file recipes [51]). Also, it does not address
the fault tolerance of the key manager and the provider, yet
we can implement a quorum-based design for key genera-
tion [27] and storage [45]. Finally, it focuses on confidential-
ity, and does not support fine-grained access control (e.g.,
attribute-based encryption [29]).

5 Evaluation
We conduct trace-driven evaluation to study the storage-
confidentiality trade-off of TED (§5.2) and the performance
of TEDStore in networked settings (§5.3). Our evaluation
shows the following key findings:

• TED balances the trade-off between storage efficiency
and data confidentiality, which are not achievable by SKE
and MLE (§1). Compared to MinHash encryption (§2.4), it
achieves both lower KLD and less storage blowup.
• TEDmaps the plaintext chunks with high frequencies into
distinct ciphertext chunks in different encryption runs.
• TED automatically controls the actual storage blowup by
the configurable storage blowup factor 𝑏.
• TED achieves approximately 30× key generation speedup
over existing approaches. It also incurs limited perfor-
mance overhead (e.g., only 7.2% of the overall upload time)
when being deployed in TEDStore.

5.1 Datasets
We consider two real-world file system snapshots.
• FSL. This dataset is collected by the File systems and Stor-
age Lab (FSL) at Stony Brook University [1]. We choose
the fslhomes snapshots taken from the home directories
of different users on a shared file system. Each snapshot is
represented as an ordered list of 48-bit chunk fingerprints
obtained from content-defined chunking. We focus on the
snapshots whose average chunk sizes are 8 KB. We sam-
ple a total of 42 snapshots from nine users over a span
of January 22 to June 17 in 2013 (more precisely, on Janu-
ary 22, February 22, March 22, April 22, May 17, and June
17). The snapshot sizes vary significantly from 2.73GB
to 251.01GB. Our dataset covers a total of 3.08 TB of pre-
deduplicated data. The data size reduces to 1.54 TB if we
perform deduplication on each snapshot.
• MS. This dataset contains the Windows file system snap-
shots collected by Microsoft [52]. Each snapshot is rep-
resented as an ordered list of 40-bit chunk fingerprints
obtained from content-defined chunking. We focus on the
snapshots whose average chunk sizes are 8 KB. We sample
30 snapshots, each of which is of size around 100GB. Our
dataset covers a total of 3.91 TB of pre-deduplicated data.
The data size reduces to 1.34 TB if we perform deduplica-
tion on each snapshot.

5.2 Trade-off Analysis on TED
Setup.We consider two variants of TED: (i) Basic TED (BTED),
which chooses a fixed balance parameter 𝑡 ; and (ii) Full TED
(FTED), which automatically configures 𝑡 for a given stor-
age blowup factor 𝑏. Both variants employ sketch-based
frequency counting and probabilistic key generation. By de-
fault, we fix 𝑟 = 4 rows and 𝑤 = 225 counters per row in
the CM-Sketch for key generation (§3.4). For FTED, we dis-
able batching in key generation (§3.5), such that 𝑡 is derived
from the frequencies of all plaintext chunks per snapshot
(we evaluate the impact of batching in Experiment A.5).
Experiment A.1 (Overall analysis). We first analyze the
overall trade-off of different encryption approaches, in terms
of the KLD and the actual storage blowup over exact dedupli-

Balancing Storage Efficiency and Data Confidentiality with Tunable Encrypted Deduplication EuroSys’20, April 27–30, 2020, Heraklion, Greece

1.
72

0

1.
35

0.
56

0.
52

0.
45

0.
34

0.
40

0.
33

0.
30

0.
26

0.0
0.5
1.0
1.5
2.0
2.5

MLE SKE Min-
Hash

BTED,
t=20

BTED,
t=15

BTED,
t=10

BTED,
t=5

FTED,
b=1.05

FTED,
b=1.1

FTED,
b=1.15

FTED,
b=1.2

KL
D

(a) KLD in FSL

1

1.
76

1.
24

1.
01

1.
02

1.
03 1.
07

1.
04 1.
07 1.
10

1.
11

1.0
1.2
1.4
1.6
1.8
2.0

MLE SKE Min-
Hash

BTED,
t=20

BTED,
t=15

BTED,
t=10

BTED,
t=5

FTED,
b=1.05

FTED,
b=1.1

FTED,
b=1.15

FTED,
b=1.2

St
or

ag
e

Bl
ow

up

(b) Actual storage blowup in FSL

1.
99

0

1.
15

0.
85

0.
78

0.
68

0.
49 0.
71

0.
60

0.
53

0.
46

0.0
0.5
1.0
1.5
2.0
2.5
3.0

MLE SKE Min-
Hash

BTED,
t=20

BTED,
t=15

BTED,
t=10

BTED,
t=5

FTED,
b=1.05

FTED,
b=1.1

FTED,
b=1.15

FTED,
b=1.2

KL
D

(c) KLD in MS

1

2.
97

1.
61

1.
02

1.
04

1.
07 1.
19

1.
05 1.
10 1.
13 1.
17

1.0
1.5
2.0
2.5
3.0
3.5

MLE SKE Min-
Hash

BTED,
t=20

BTED,
t=15

BTED,
t=10

BTED,
t=5

FTED,
b=1.05

FTED,
b=1.1

FTED,
b=1.15

FTED,
b=1.2

St
or

ag
e

Bl
ow

up

(d) Actual storage blowup in MS

Figure 2. Experiment A.1: the storage-confidentiality trade-off for
different encryption approaches in both FSL and MS datasets. Each
error bar represents the variance (in terms of the 95% conference
interval) across different snapshots in each encryption approach.

cation for each snapshot in both FSL and MS datasets (i.e., we
only apply deduplication to each snapshot, but not across all
snapshots in a dataset). We compare five approaches: MLE,
SKE, MinHash encryption, BTED, and FTED. For MinHash
encryption, we fix its minimum, average, and maximum seg-
ment sizes as 512KB, 1MB, and 2MB [44]; for BTED, we
vary 𝑡 ; for FTED, we vary 𝑏.

Since our datasets represent the chunks by fingerprints
and do not contain the actual content (§5.1), we simulate
each encryption approach by treating each fingerprint as a
plaintext chunk and deriving the key for the chunk according
to the specific key derivation scheme. For MLE, the key is
the SHA-256 hash of the fingerprint; for SKE, the key is a
fresh random 32-byte string; for MinHash encryption, the
key is the SHA-256 hash of the minimum fingerprint of the
associated segment; for BTED and FTED, the key is computed
from the frequency of the fingerprint. Given the derived
key, we encrypt the fingerprint via AES-256 to obtain the
ciphertext chunk.
Figure 2 shows the average results over all snapshots in

both FSL and MS datasets, with the 95% confidence intervals.
MLE achieves exact deduplication (i.e., its actual storage
blowup is always one), but incurs the highest KLD due to

1.01.051.11.151.2

2M 4M 8M 16M 32M
w

St
or

ag
e

Bl
ow

up

b=1.05 b=1.1 b=1.15 b=1.2

0.0

0.2

0.4

0.6

221 222 223 224 225

w

KL
D

1.0

1.05

1.1

1.15

221 222 223 224 225

w

St
or

ag
e

Bl
ow

up

(a) KLD in FSL (b) Actual storage blowup in FSL

0.0
0.2
0.4
0.6
0.8
1.0

221 222 223 224 225

w

KL
D

1.0
1.05
1.1

1.15
1.2

221 222 223 224 225

w

St
or

ag
e

Bl
ow

up

(c) KLD in MS (d) Actual storage blowup in MS

Figure 3. Experiment A.2: Analysis of sketch-based frequency
counting. A larger𝑤 implies more accurate counting, at the expense
of more memory usage.

deterministic encryption. SKE has the minimum KLD (zero),
but incurs a high actual storage blowup.MinHash encryption,
BTED, and FTED realize the trade-off of KLD and storage
blowup. For example, in the FSL (MS) dataset, FTED with
𝑏 = 1.2 reduces the KLD ofMLE by 84.7% (76.8%), and reduces
the actual storage blowup of SKE by 37.0% (60.6%).
Both BTED and FTED achieve simultaneously less KLD

and less storage blowup than MinHash encryption. In the
FSL (MS) dataset, MinHash encryption has a KLD of 1.35
(1.15) with an actual storage blowup of 1.24 (1.61), while all
BTED and FTED variants have a KLD below 0.56 (0.85) and
an actual storage blowup at most 1.11 (1.17).

Comparing BTED and FTED, while BTED has a larger KLD
and a smaller actual storage blowup for a larger 𝑡 , and vice
versa, its actual storage blowup cannot be readily configured
with 𝑡 . In contrast, FTED provides an effective way to control
the actual storage blowup. As 𝑏 increases from 1.05 to 1.2,
the actual storage blowup increases from 1.04 to 1.11 in FSL
and from 1.05 to 1.17 in MS. Note that the actual storage
blowup in the FSL dataset is smaller than the given 𝑏 when
𝑏 is large (e.g., the actual storage blowup is 1.11 for 𝑏 =

1.2), since some snapshots have very few duplicate chunks
and their maximum achievable storage blowups over exact
deduplication can be smaller than the given 𝑏.
Experiment A.2 (Analysis of sketch-based frequency
counting).We evaluate how various CM-Sketch sizes affect
the storage-confidentiality trade-off. We focus on FTED with
varying 𝑏 (from 1.05 to 1.2). For the CM-Sketch, we fix 𝑟 = 4,
and vary𝑤 from 221 to 225 (i.e., if the counter size is 4 bytes,
the memory size varies from 32MB to 512MB).

Figure 3 shows the results. For all FTED variants, a smaller
𝑤 implies a larger KLD and a smaller actual storage blowup.
The reason is that a smaller𝑤 leads to larger over-estimates
of chunk frequencies (due tomore hash collisions in a counter),
so FTED configures a larger 𝑡 that leads to more identical

EuroSys’20, April 27–30, 2020, Heraklion, Greece Li et al.

Probabilistic Deterministic

0.0
0.1
0.2
0.3
0.4

1.05 1.1 1.15 1.2
Storage Blowup Factor

KL
D

1.0

1.05

1.1

1.15

1.05 1.1 1.15 1.2
Storage Blowup Factor

St
or

ag
e

Bl
ow

up

(a) KLD in FSL (b) Actual storage blowup in FSL

0.0
0.2
0.4
0.6
0.8

1.05 1.1 1.15 1.2
Storage Blowup Factor

KL
D

1.0
1.05
1.1

1.15
1.2

1.05 1.1 1.15 1.2
Storage Blowup Factor

St
or

ag
e

Bl
ow

up

(c) KLD in MS (d) Actual storage blowup in MS

 0
 20
 40
 60
 80
100

 20 40 60 80 100
Top-% Frequent Chunks

D
iff

er
en

ce
 (%

)

 0
 20
 40
 60
 80
100

 20 40 60 80 100
Top-% Frequent Chunks

D
iff

er
en

ce
 (%

)

(e) Difference in FSL (f) Difference in MS

Figure 4. Experiment A.3: Analysis of probabilistic key generation,
which we compare with deterministic key generation.

ciphertext chunks for deduplication. For example, in the MS
dataset, as𝑤 decreases from 225 (our default) to 221, the ac-
tual storage blowup of FTED with 𝑏 = 1.2 drops from 1.17 to
1.04, while the KLD increases from 0.46 to 0.73.
Experiment A.3 (Analysis of probabilistic key genera-
tion).We study the effect of probabilistic key generation. We
compare it with a deterministic key generation approach, in
which the client derives the key 𝐾 by directly setting 𝑘 = 𝑘𝑥
(see Equations (2) and (4) in §3.4). We focus on FTED with
varying 𝑏 (from 1.05 to 1.2).

Figures 4(a)-4(d) show the KLD and actual storage blowup
results, averaged over all snapshots in both FSL and MS
datasets. Probabilistic key generation has a slightly smaller
actual storage blowup than deterministic key generation (by
0.9-2.8% in FSL and 0.7-1.6% in MS), mainly because it may
choose some previously used key seeds for key generation
and generate more duplicate ciphertext chunks for dedupli-
cation. The trade-off is that it has a higher KLD (by 9.6-26.7%
in FSL and 15.6-26.2% in MS).
Nevertheless, probabilistic key generation adds random-

ness to the resulting ciphertext chunks. To show this ef-
fect, we encrypt each snapshot twice. We then measure the
difference rate for each plaintext chunk, defined as the ra-
tio between the number of distinct ciphertext chunks in
two encryption runs and the number of duplicate copies
for the plaintext chunk. For example, suppose that a plain-
text chunk has four duplicate copies (𝑀1, 𝑀2, 𝑀3, 𝑀4), which
are encrypted into the ciphertext chunks (𝐶1,𝐶2,𝐶3,𝐶4) and
(𝐶1,𝐶

′
2,𝐶
′
3,𝐶
′
4) respectively in the two encryption runs (i.e.,

FTED, b=1.05 BTED, t=5

0.0
0.2
0.4
0.6
0.8
1.0

 1 7 14 21 28 35 42
Snapshot

KL
D

1.0
1.05
1.1

1.15
1.2

 1 7 14 21 28 35 42
Snapshot

St
or

ag
e

Bl
ow

up

(a) KLD in FSL (b) Actual storage blowup in FSL

0.0
0.5
1.0
1.5
2.0

 1 5 10 15 20 25 30
Snapshot

KL
D

1.0
1.2
1.4
1.6
1.8

 1 5 10 15 20 25 30
Snapshot

St
or

ag
e

Bl
ow

up

(c) KLD in MS (d) Actual storage blowup in MS

Figure 5. Experiment A.4: Comparison between BTED (𝑡 = 5) and
FTED (𝑏 = 1.05) in the controllability of the actual storage blowup.
Here, the x-axis refers to the snapshots sorted in the ascending
order of their y-axis values.

the last three ciphertext chunks are different). The difference
rate is 75%. Note that for deterministic key generation, ev-
ery plaintext chunk has a zero difference rate, as the keys
across all encryption runs are identical. Also, if a plaintext
chunk has only one unique copy, its difference rate is zero,
as there is only one key seed to select. We focus on FTED
with 𝑏 = 1.05.

Figures 4(e) and 4(f) show the average difference rates
for different top-percentiles of plaintext chunks, ranked by
their frequencies, in both FSL and MS datasets. A plaintext
chunk with a high frequency is more likely encrypted to
a distinct ciphertext chunk (e.g., the top-80% of plaintext
chunks have a difference rate of 89.2% in MS), since it has
more key seed candidates and different key seeds are more
likely to be chosen across encryption runs.
ExperimentA.4 (Controllability of storage blowup).We
study how TED controls the actual storage blowup via au-
tomated parameter configuration. We compare BTED and
FTED, where we set 𝑡 = 5 for BTED and 𝑏 = 1.05 for FTED.
The results are similar for other BTED and FTED variants.

Figure 5 shows the results. BTED incurs a larger variance
of the actual storage blowup across the snapshots (from 1.00
to 1.18 in FSL and from 1.08 to 1.71 in MS). The reason is that
the frequency characteristics of plaintext chunks are different
across snapshots, and the same value of 𝑡 cannot control the
actual storage blowup to the same level for all snapshots. In
contrast, FTED controls the actual storage blowup to around
the pre-defined storage blowup factor 𝑏 = 1.05 (from 1.02 to
1.07 in FSL and from 1.04 to 1.06 in MS), by automatically
tuning 𝑡 for each snapshot based on its frequency distribution
of plaintext chunks.
Experiment A.5 (Impact of batch size). To efficiently con-
figure 𝑡 in practice, a client issues key generation requests

Balancing Storage Efficiency and Data Confidentiality with Tunable Encrypted Deduplication EuroSys’20, April 27–30, 2020, Heraklion, Greece

1.01.051.11.151.2

2M 4M 8M 16M 32M
w

St
or

ag
e

Bl
ow

up

b=1.05 b=1.1 b=1.15 b=1.2

0.0
0.1
0.2
0.3
0.4

Nil 12 24 48 96
Batch Size (*1000)

KL
D

1.0
1.05
1.1

1.15
1.2

Nil 12 24 48 96
Batch Size (*1000)

St
or

ag
e

Bl
ow

up

(a) KLD in FSL (b) Actual storage blowup in FSL

0.0
0.2
0.4
0.6
0.8

Nil 12 24 48 96
Batch Size (*1000)

KL
D

1.0
1.05
1.1

1.15
1.2

1.25

Nil 12 24 48 96
Batch Size (*1000)

St
or

ag
e

Bl
ow

up

(c) KLD in MS (d) Actual storage blowup in MS

Figure 6. Experiment A.5: Impact of the batch size of key genera-
tion on KLD and the actual storage blowup; “Nil” means 𝑡 is derived
from the frequencies of all plaintext chunks per snapshot.

for a batch of plaintext chunks (§3.5). We study how batch-
ing affects the KLD and the actual storage blowup. Recall
that with batching, TED initializes 𝑡 = 1, and adjusts 𝑡 on a
per-batch basis. We focus on FTED with varying 𝑏.
Figure 6 shows the results versus the batch size (varied

from 12,000 to 96,000) in both the FSL and MS datasets; for
comparisons, we also consider the default case where the
client issues the key generation requests for all plaintext
chunks (labelled as “Nil”). Compared to the default case,
batching has a slightly higher actual storage blowup; for
example, for 𝑏 = 1.05 and the batch size 12,000, the actual
storage blowup is 1.06 in both FSL and MS datasets. Also,
the actual storage blowup increases with the batch size; for
example, for 𝑏 = 1.05, it increases from 1.061 to 1.071 in
FSL and from 1.062 to 1.069 in MS. The main reason is that
TED initializes 𝑡 = 1, so all duplicate plaintext chunks are
encrypted to distinct ciphertext chunks, so the actual storage
blowup is higher. Also, a larger batch size takes TED a longer
time to increase 𝑡 (a larger 𝑡 impliesmore duplicate ciphertext
chunks). Overall, the impact of the batch size remains limited
compared to the default case, yet it allows 𝑡 to be efficiently
configured in practice (§3.5).

5.3 Performance Evaluation on TEDStore
We evaluate TEDStore in networked environments using
both synthetic and real-world workloads. We analyze differ-
ent performance aspects of TEDStore. By default, we choose
the following parameters when realizing TED in TEDStore:
(i) 𝑏 = 1.05, (ii) 𝑟 = 4 and 𝑤 = 221 (i.e., 32MB memory) for
sketch-based frequency counting (§3.3), and (iii) a batch size
of 48,000 chunks for key generation (§3.5).

5.3.1 Synthetic Workloads
We first evaluate TEDStore using synthetic workloads with
only unique data in a testbed configured with one or multiple

clients. We also remove the disk I/O overhead from our eval-
uation. Our goal is to understand the maximum achievable
performance of TEDStore without the impact of deduplica-
tion and disk I/O, and show that TED accounts for limited
overhead in TEDStore.
Methodology. We deploy TEDStore in a LAN testbed with
multiple machines, each of which has a quad-core 3.4 GHz
Intel Core i5-7500 CPU and 32GB RAM. All machines are
connected with 10GbE, and run Linux Ubuntu 16.04.
We generate a synthetic dataset with a set of 2GB files,

each of which comprises globally unique chunks (i.e., no
duplicates). We let one or multiple clients issue a 2GB file of
unique data to the provider as fast as possible. To avoid disk
I/O, we load all data into each client’s memory before each
test, and let the provider store all received data in memory.
Experiment B.1 (Microbenchmarks). We start with mi-
crobenchmark evaluation by deploying a client, a key man-
ager, and a provider all in a single machine, in which all
entities are connected via the local loopback interface. We
measure the computational time of different steps when the
client uploads a 2GB file of unique data to the provider. The
steps include: (i) chunking, in which the client divides the file
data into chunks; (ii) fingerprinting, in which the client com-
putes the fingerprint of each chunk; (iii) hashing, in which
the client computes the short hashes of each chunk; (iv) key
seeding, in which the keymanager performs frequency count-
ing, solves the optimization problem, and returns the key
seed for each chunk; (v) key derivation, in which the client
derives the key of each chunk; and (vi) encryption, in which
the client encrypts each chunk.

Since TEDStore’s performance depends on the choices of
its underlying cipher and hash functions, we consider two
versions of cipher/hash algorithms: (i) Fast, which uses MD5
for fingerprinting and the hash function H(·) (§3.4) as well
as AES-128 for chunk encryption; and (ii) Secure (our default
implementation), which uses SHA-256 and AES-256 instead.

Table 1 presents the breakdown of the computational time
(per 1MB of uploads) in both the fast and secure TEDStore
versions. Fingerprinting and encryption are the most time-
consuming steps, since they perform cryptographic opera-
tions on all file data. In contrast, the key generation under
TED, including hashing, key seeding, and key derivation,
takes only 7.2% and 6.1% of the overall computational time
in the fast and secure versions, respectively. Thus, TED is
not a performance bottleneck.
ExperimentB.2 (Key generationperformance).Weeval-
uate the overall key generation performance of TEDStore
(including hashing, key seeding, and key derivation, as de-
scribed in Experiment B.1) in a networked setting. We com-
pare it with two state-of-the-art blinded key generation pro-
tocols (§2.1): (i) blind RSA [15] and (ii) blind BLS [10]. We
focus on a single-client case, and deploy the client and the key
manager in two different machines connected with 10GbE.

EuroSys’20, April 27–30, 2020, Heraklion, Greece Li et al.

Steps Fast Secure
Chunking 0.8ms

Fingerprinting 1.7ms 2.6ms
Hashing 0.4ms

Key seeding 0.01ms 0.04ms
Key derivation 0.07ms 0.1ms
Encryption 3.7ms 4.9ms

Table 1. Experiment B.1: Breakdown of com-
putational time per 1MB of uploads in syn-
thetic workloads.

 0
 400
 800
1200
1600

 3 6 12 24 48 96
Batch Size (*1000)

Sp
ee

d
(M

B/
s) TEDStore

Blind-BLS
Blind-RSA

Figure 7. Experiment B.2: Key generation
performance.

 0
 200
 400
 600
 800
1000

1 2 3 4 5 6 7 8
Number of Clients

Sp
ee

d
(M

B/
s)

Upload
Download

Figure 8. Experiment B.3: Multi-client per-
formance.

For TEDStore, we vary the batch size in key generation (§3.5).
We measure the key generation speed as the ratio of the file
data size (i.e., 2 GB) to the total running time from when the
client computes the hashes (in TEDStore) or blinded finger-
prints (in blinded RSA and blinded BLS) for all chunks until
it obtains all keys from the key manager.
Figure 7 shows the results versus the batch size (from

3,000 to 96,000); note that blind RSA and blind BLS do not
consider parameter updates and their performance remains
the same independent of the batch size. TEDStore achieves a
much higher key generation speed than blind RSA and blind
BLS, since it uses lightweight hash computations instead of
expensive blinded key generation operations. For example,
when the batch size is 48,000, TEDStore achieves a key gen-
eration speed of 997.4MB/s, while those of blind RSA and
blind BLS are only 32.5MB/s and 2.3MB/s, respectively (i.e.,
at least a 30× speedup in TEDStore). Also, the key generation
speed of TEDStore increases with the batch size, as it solves
the optimization problem fewer times.

Experiment B.3 (Multi-client performance). We evalu-
ate the performance of TEDStore by having multiple clients
upload/download data concurrently. Each client uploads a
2GB file of unique data to the provider, and then downloads
the 2GB file from the provider. We issue the concurrent up-
loads/downloads of multiple clients at the same time. We
measure the aggregate upload (download) speed as the ratio
of the total uploaded (downloaded) data size to the total time
all clients finish the uploads (downloads).
Figure 8 shows the results versus the number of clients

(from one to eight). The aggregate upload speed increases
with the number of clients and finally reaches 863.2MB/s.
On the other hand, the aggregate download speed first in-
creases to 669.3MB/s for three clients, followed by dropping
to 415.5MB/s for eight clients due to the read contention
across multiple clients. We can improve the download per-
formance by pre-fetching appropriate chunks [22, 46].

5.3.2 Real-World Workloads
We evaluate the performance of TEDStore when deduplica-
tion and disk I/O are in effect, using real-world workloads
based on the large-scale datasets in §5.1.

Methodology. We deploy TEDStore in a LAN testbed with
three machines. Specifically, we deploy a client on a machine
with a 10-core 2.4 GHz Intel Xeon E5-2640v4 CPU and 64GB
RAM, a key manager on a machine with two six-core 2.4 GHz
Intel Xeon E5-2620v3 CPUs and 32GB RAM, and a provider
on a machine with a 16-core 2.1 GHz Intel Xeon E5-2683v4
CPU and 64GB RAM. The provider machine is attached with
a RAID-5 array of four Western Digital Blue 4 TB 5400 rpm
SATA harddisks.

Recall that our datasets only contain the fingerprints and
sizes of chunks (§5.1). We reconstruct each chunk by repeat-
edly writing its fingerprints to a chunk of the specified size,
so the same (distinct) fingerprint returns the same (distinct)
chunk.

Experiment B.4 (Microbenchmarks).We conduct micro-
benchmarks on real-world workloads in a networked set-
ting (as opposed to the single-machine setting in Experi-
ment B.1). For each of the FSL and MS datasets, we choose
the snapshot that has the medium size among all snapshots
in the dataset. For FSL, the selected snapshot has 116.9GB
of pre-deduplicated data (or 13.4M chunks), while for MS,
the selected snapshot has 97.8 GB (or 16.2M chunks) of pre-
deduplicated data. We measure the upload time breakdown
as in Experiment B.1 with two exceptions: (i) we do not in-
clude chunking due to our trace replay, and (ii) we add awrite
step, in which the client writes the pre-deduplicated cipher-
text chunks to the provider, which performs deduplication
and stores the unique ciphertext chunks on disk.

Table 2 presents the breakdown of the computational time
(per 1MB of uploads) in both the FSL and MS snapshots. In
general, uploading the FSL snapshot is faster than upload-
ing the MS snapshot in individual steps. Our investigation
reveals that the FSL snapshot has a larger chunk size on
average and hence fewer chunks to process per 1MB of data.
Overall, as in Experiment B.1, the key generation of TED
remains efficient and does not slow down the overall upload
operation.

Experiment B.5 (Upload/download speeds).We conduct
trace-driven evaluation on the upload and download per-
formance of TEDStore. We pick ten snapshots from each
of the FSL and MS datasets, such that the aggregate pre-

Balancing Storage Efficiency and Data Confidentiality with Tunable Encrypted Deduplication EuroSys’20, April 27–30, 2020, Heraklion, Greece

Steps FSL MS
Fingerprinting 2.7ms 2.7ms

Hashing 0.4ms 0.4ms
Key seeding 1.3ms 2.0ms

Key derivation 0.07ms 0.1ms
Encryption 5.4ms 5.6ms

Write 5.4ms 5.8ms

Table 2. Experiment B.4: Breakdown of com-
putational time per 1MB of uploads in real-
world workloads.

Upload Download

 0
 40
 80
120
160

 1 2 3 4 5 6 7 8 9 10
Snapshot

Sp
ee

d
(M

B/
s)

 0
 40
 80
120
160

 1 2 3 4 5 6 7 8 9 10
Snapshot

Sp
ee

d
(M

B/
s)

(a) FSL (b) MS

Figure 9. Experiment B.5: Upload/download speeds in real-world workloads. The x-axis
represents the snapshots based on their upload/download orders.

deduplicated sizes of the FSL and MS snapshots are 2.0 TB
and 1.1 TB, respectively. We upload the selected snapshots
of each dataset in the order of their creation times, followed
by downloading them.

Figure 9 shows the upload and download speeds for each
snapshot. The upload speed remains stable, at 122.0-133.8MB/s
in FSL and 110.6-116.9MB/s in MS. Note that the upload
speed is lower than that in our evaluation on synthetic work-
loads (Experiment B.3), mainly due to the fingerprint index
access overhead. Specifically, we now implement the finger-
print index based on LevelDB [2], which incurs high I/O
compaction overhead when the number of entries increases
[50]. For example, the number of fingerprint index entries
in the MS dataset is about 1.78× that in the FSL dataset, so
the upload speed of the MS dataset is 12.2% less than that of
the FSL dataset.

The download speed generally decreases in both datasets,
from 67.0MB/s to 48.0MB/s in FSL and from 57.6MB/s to
37.9MB/s in MS. In addition to the lookup overhead in the
fingerprint index for identifying chunk locations, chunk frag-
mentation [46] also degrades the restore performance of the
later added snapshots, whose chunks are scattered in storage
after deduplication. Thus, more disk seeks are incurred to
retrieve the later added snapshots.
To improve the upload/download performance, we can

optimize the indexing techniques [69, 72], as well as leverage
rewriting and caching to mitigate chunk fragmentation [46].
We pose these issues as future work.

6 Related Work
Encrypted deduplication. MLE [16] formalizes the theo-
retical framework of encrypted deduplication. Follow-up
studies address different aspects of MLE from a theoreti-
cal perspective, including parameter dependency [4], data
correlation [14], and updates [70]. Liu et al. [49] present a
generalized security model for encrypted deduplication.

On the applied side, various encrypted deduplication sys-
tems (e.g., [5, 8, 24, 26, 37, 58, 64, 68]) realize the MLE con-
struction via convergent encryption (CE) [26]. Some ap-
proaches augment CE with secret sharing [45] and transpar-
ent metadata management [62]. However, CE is vulnerable

to offline brute-force attacks (§2.1).
DupLESS [15] implements server-aided MLE by perform-

ing key management in a dedicated key manager, so as to
defend against offline brute-force attacks (§2.1). Several stud-
ies improve DupLESS in different aspects, such as quorum-
based key management [27], efficient key generation via
cross-user file-level deduplication [71], and decentralized key
agreement among users without a dedicated key manager
[48]. Some studies augment encrypted deduplication with
new functionalities, such as periodic verification of storage
space [10], dynamic access control [59], bandwidth-efficient
uploads [25], or space-efficient metadata management [43].
However, all the above implementations of encrypted

deduplication build on deterministic encryption and inevitably
leak the frequency distribution of original data.

Attacks against encrypted deduplication. Some studies
identify potential attacks against encrypted deduplication.
Offline brute-force attacks [15] can infer the original plain-
text chunk of a ciphertext chunk by testing all candidate
plaintext chunks, or learn the remaining content of a file
[67]. Side-channel attacks [11, 25, 31, 32, 57, 73] can infer the
content of an already stored file by examining if a chunk can
be deduplicated via client-side deduplication. Ritzdorf et al.
[61] exploit chunk sizes to infer the existence of a file. TED
performs server-aided MLE and provider-side deduplication
to defend against offline brute-force attacks and side-channel
attacks, respectively (§2.2). It can also be combined with the
countermeasures against chunk size leakage [61].
Our work focuses on defending against frequency anal-

ysis in encrypted deduplication. Li et al. [44] show how to
increase the inference rate of frequency analysis (from an
adversarial perspective) by exploiting chunk locality [47, 72].
TED defends against frequency analysis by relaxing the de-
terministic nature of MLE via a tunable mechanism.

Defenses against frequency analysis. In §2.4, we have re-
viewed the limitations of existing defense approaches against
frequency analysis in encrypted deduplication. Some studies
propose frequency analysis defenses for encrypted databases.
Kerschbaum [39] as well as Lewi andWu [42] propose to hide
attribute frequencies by randomizing ciphertexts. Frequency-

EuroSys’20, April 27–30, 2020, Heraklion, Greece Li et al.

smoothing encryption [41] formalizes a cryptographic frame-
work to prevent frequency analysis in databases. Such ap-
proaches, however, cannot be adapted to encrypted dedupli-
cation, since they either prohibit deduplication for generat-
ing random ciphertexts [39, 42], or incur high performance
overhead by using computational expensive cryptographic
primitives (e.g., homomorphic encoding) [41].

7 Conclusion
This paper addresses the dilemma of achieving both storage
efficiency and data confidentiality in encrypted deduplica-
tion for outsourced storage. TED is a new cryptographic
primitive that supports tunable encrypted deduplication, in
which users can balance the trade-off between storage effi-
ciency and data confidentiality through a configurable stor-
age blowup factor, so as to relax the deterministic nature
of the well-known MLE primitive and defend against fre-
quency analysis. We realize TED in an encrypted dedupli-
cation storage prototype TEDStore, and demonstrate via
extensive trace-driven evaluation that TED enables a tunable
storage-confidentiality trade-off and incurs low performance
overhead.

Acknowledgement
We thank our shepherd, Gala Yadgar, and the anonymous
reviewers for their valuable comments. We thank Haibin
Zhang for his early suggestions. This work was supported in
part by grants by National Key R&DProgram of China (Grant
number 2017YFB0802300), National Natural Science Founda-
tion of China (Grant numbers 61972073 and 61602092), Open
Research Project of the State Key Laboratory of Informa-
tion Security, Institute of Information Engineering, Chinese
Academy of Sciences (Grant number 2019-MS-05), and the
Research Grants Council of Hong Kong (CRF C7036-15G).

References
[1] FSL traces and snapshots public archive. http://tracer.filesystems.org/.
[2] LevelDB. https://github.com/google/leveldb.
[3] OpenSSL: Cryptography and SSL/TLS toolkit. https://www.openssl.

org/.
[4] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev.

Message-locked encryption for lock-dependent messages. In Proc.
of CRYPTO, 2013.

[5] A. Adya,W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur,
J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer. Farsite:
Federated, available, and reliable storage for an incompletely trusted
environment. In Proc. of USENIX OSDI, 2002.

[6] I. A. Al-Kadit. Origins of Cryptology: The Arab Contributions. Cryp-
tologia, 16(2):97–126, 1992.

[7] G. Amvrosiadis and M. Bhadkamkar. Identifying trends in enterprise
data protection systems. In Proc. of USENIX ATC, 2015.

[8] P. Anderson and L. Zhang. Fast and secure laptop backups with
encrypted de-duplication. In Proc. of USENIX LISA, 2010.

[9] A. Appleby. SMHasher. https://github.com/aappleby/smhasher.
[10] F. Armknecht, J.-M. Bohli, G. O. Karame, and F. Youssef. Transparent

data deduplication in the cloud. In Proc. of ACM CCS, 2015.
[11] F. Armknecht, C. Boyd, G. T. Davies, K. Gjøsteen, and M. Toorani. Side

channels in deduplication: Trade-offs between leakage and efficiency.
In Proc. of ACM ASIACCS, 2017.

[12] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song. Provable data possession at untrusted stores. In Proc. of
ACM CCS, 2007.

[13] T. Baignères, P. Junod, and S. Vaudenay. How far can we go beyond
linear cryptanalysis? In Proc. of ASIACRYPT, 2004.

[14] M. Bellare and S. Keelveedhi. Interactive message-locked encryption
and secure deduplication. In Proc. of PKC, 2015.

[15] M. Bellare, S. Keelveedhi, and T. Ristenpart. DupLESS: Server-aided
encryption for deduplicated storage. In Proc. of USENIX Security, 2013.

[16] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryp-
tion and secure deduplication. In Proc. of EUROCRYPT, 2013.

[17] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge. Extreme
binning: Scalable, parallel deduplication for chunk-based file backup.
In Proc. of IEEE MASCOTS, 2009.

[18] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and V. Shmatikov.
The tao of inference in privacy-protected databases. In Proc. of VLDB,
2018.

[19] J. Black. Compare-by-hash: A reasoned analysis. In Proc. of USENIX
ATC, 2006.

[20] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[21] A. Z. Broder. On the resemblance and containment of documents. In
Proc. of SEQUENCES, pages 21–29, 1997.

[22] Z. Cao, H. Wen, F. Wu, and D. H. Du. ALACC: Accelerating restore
performance of data deduplication systems using adaptive look-ahead
window assisted chunk caching. In Proc. of USENIX FAST, 2018.

[23] G. Cormode and S. Muthukrishnan. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms,
55(1):58–75, 2005.

[24] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making backup
cheap and easy. In Proc. of USENIX OSDI, 2002.

[25] H. Cui, C. Wang, Y. Hua, Y. Du, and X. Yuan. A bandwidth-efficient
middleware for encrypted deduplication. In Proc. of IEEE DSC, 2018.

[26] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and M. Theimer. Re-
claiming space from duplicate files in a serverless distributed file
system. In Proc. of IEEE ICDCS, 2002.

[27] Y. Duan. Distributed key generation for encrypted deduplication:
Achieving the strongest privacy. In Proc. of ACM CCSW, 2014.

[28] K. Eshghi and H. K. Tang. A framework for analyzing and improv-
ing content-based chunking algorithms. Technical Report HPL-2005-
30(R.1), Hewlett-Packard Laboratories, 2005.

[29] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In Proc. of ACM
CCS, 2006.

[30] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart.
Leakage-abuse attacks against order-revealing encryption. In Proc. of
IEEE S & P, 2017.

[31] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of
ownership in remote storage systems. In Proc. of ACM CCS, 2011.

[32] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud
services: Deduplication in cloud storage. IEEE Security & Privacy,
8(6):40–47, 2010.

[33] HIPAA Journal. Hard drive theft sees data of 1 million individuals
exposed. https://www.hipaajournal.com/hard-drive-theft-sees-data-
1-million-individuals-exposed-8859/, 2017.

[34] IDC. Data age 2025. https://www.seagate.com/our-story/data-age-
2025/.

[35] K. Jin and E. L. Miller. The effectiveness of deduplication on virtual
machine disk images. In Proc. of ACM SYSTOR, 2009.

[36] A. Juels and B. S. Kaliski, Jr. Pors: Proofs of retrievability for large files.
In Proc. of ACM CCS, 2007.

[37] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus:

http://tracer.filesystems.org/
https://github.com/google/leveldb
https://www.openssl.org/
https://www.openssl.org/
https://github.com/aappleby/smhasher
https://www.hipaajournal.com/hard-drive-theft-sees-data-1-million-individuals-exposed-8859/
https://www.hipaajournal.com/hard-drive-theft-sees-data-1-million-individuals-exposed-8859/
https://www.seagate.com/our-story/data-age-2025/
https://www.seagate.com/our-story/data-age-2025/

Balancing Storage Efficiency and Data Confidentiality with Tunable Encrypted Deduplication EuroSys’20, April 27–30, 2020, Heraklion, Greece

Scalable secure file sharing on untrusted storage. In Proc. of USENIX
FAST, 2003.

[38] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman
and Hall/CRC, 2014.

[39] F. Kerschbaum. Frequency-hiding order-preserving encryption. In
Proc. of ACM CCS, 2015.

[40] S. Kullback and R. A. Leibler. On information and sufficiency. The
Annals of Mathematical Statistics, 22(1):79–86, 1951.

[41] M.-S. Lacharité and K. G. Paterson. Frequency-smoothing encryption:
preventing snapshot attacks on deterministically encrypted data. IACR
Trans. on Symmetric Cryptology, pages 277–313, 2018.

[42] K. Lewi and D. J. Wu. Order-revealing encryption: New constructions,
applications, and lower bounds. In Proc. of ACM CCS, 2016.

[43] J. Li, P. P. C. Lee, Y. Ren, and X. Zhang. Metadedup: Deduplicating
metadata in encrypted deduplication via indirection. In Proc. of IEEE
MSST, 2019.

[44] J. Li, C. Qin, P. P. C. Lee, and X. Zhang. Information leakage in en-
crypted deduplication via frequency analysis. In Proc. of IEEE/IFIP
DSN, 2017.

[45] M. Li, C. Qin, and P. P. C. Lee. CDStore: Toward reliable, secure, and
cost-efficient cloud storage via convergent dispersal. In Proc. of USENIX
ATC, 2015.

[46] M. Lillibridge, K. Eshghi, and D. Bhagwat. Improving restore speed
for backup systems that use inline chunk-based deduplication. In Proc.
of USENIX FAST, 2013.

[47] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and
P. Camble. Sparse indexing: Large scale, inline deduplication using
sampling and locality. In Proc. of USENIX FAST, 2009.

[48] J. Liu, N. Asokan, and B. Pinkas. Secure deduplication of encrypted
data without additional independent servers. In Proc. of ACM CCS,
2015.

[49] J. Liu, L. Duan, Y. Li, and N. Asokan. Secure deduplication of encrypted
data: Refined model and new constructions. In Proc. of CT-RSA, 2018.

[50] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
WiscKey: Separating keys from values in SSD-conscious storage. In
Proc. of USENIX FAST, 2016.

[51] D. Meister, A. Brinkmann, and T. Süß. File recipe compression in data
deduplication systems. In Proc. of USENIX FAST, 2013.

[52] D. T. Meyer and W. J. Bolosky. A study of practical deduplication. In
Proc. of USENIX FAST, 2011.

[53] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl.
Dark clouds on the horizon: Using cloud storage as attack vector and
online slack space. In Proc. of USENIX Security, 2011.

[54] M. Naor and O. Reingold. Number-theoretic constructions of efficient
pseudo-random functions. Journal of the ACM, 51(2):231–262, 2004.

[55] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-
preserving encrypted databases. In Proc. of ACM CCS, 2015.

[56] C. H. Papadimitriou. On the complexity of integer programming.
Journal of the ACM, 28(4):765–768, 1981.

[57] Z. Pooranian, K.-C. Chen, C.-M. Yu, and M. Conti. RARE: Defeating
side channels based on data-deduplication in cloud storage. In Proc. of
IEEE INFOCOM, 2018.

[58] P. Puzio, R. Molva, M. Önen, and S. Loureiro. ClouDedup: Secure
deduplication with encrypted data for cloud storage. In Proc. of IEEE
CloudCom, 2013.

[59] C. Qin, J. Li, and P. P. C. Lee. The design and implementation of a
rekeying-aware encrypted deduplication storage system. ACM Trans.
on Storage, 13(1):9, 2017.

[60] M. C. Rabin. Fingerprint by random polynomials, 1981.
[61] H. Ritzdorf, G. O. Karame, C. Soriente, and S. Čapkun. On information

leakage in deduplicated storage systems. In Proc. of ACM CCSW, 2016.
[62] P. Shah and W. So. Lamassu: Storage-efficient host-side encryption.

In Proc. of USENIX ATC, 2015.
[63] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl. A secure data

deduplication scheme for cloud storage. In Proc. of FC, 2014.
[64] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller. Secure data

deduplication. In Proc. of ACM StorageSS, 2008.
[65] Z. Sun, G. Kuenning, S. Mandal, P. Shilane, V. Tarasov, N. Xiao, and

E. Zadok. A long-term user-centric analysis of deduplication patterns.
In Proc. of IEEE MSST, 2016.

[66] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Cham-
ness, and W. Hsu. Characteristics of backup workloads in production
systems. In Proc. of USENIX FAST, 2012.

[67] Z. Wilcox-O’Hearn. Drew perttula and attacks on convergent encryp-
tion. https://tahoe-lafs.org/hacktahoelafs/drew_perttula.html.

[68] Z. Wilcox-O’Hearn and B. Warner. Tahoe: the least-authority filesys-
tem. In Proc. of ACM StorageSS, 2008.

[69] W. Xia, H. Jiang, D. Feng, and Y. Hua. Silo: A similarity-locality based
near-exact deduplication scheme with low ram overhead and high
throughput. In Proc. of USENIX ATC, 2011.

[70] Y. Zhao and S. S. Chow. Updatable block-level message-locked encryp-
tion. In Proc. of ACM ASIACCS, 2017.

[71] Y. Zhou, D. Feng, W. Xia, M. Fu, F. Huang, Y. Zhang, and C. Li. Secdep:
A user-aware efficient fine-grained secure deduplication scheme with
multi-level key management. In Proc. of IEEE MSST, 2015.

[72] B. Zhu, K. Li, and R. H. Patterson. Avoiding the disk bottleneck in the
data domain deduplication file system. In Proc. of USENIX FAST, 2008.

[73] P. Zuo, Y. Hua, C. Wang, W. Xia, S. Cao, Y. Zhou, and Y. Sun. Mitigating
traffic-based side channel attacks in bandwidth-efficient cloud storage.
In Proc. of IPDPS, 2018.

https://tahoe-lafs.org/hacktahoelafs/drew_perttula.html

	Abstract
	1 Introduction
	2 Problem and Motivation
	2.1 Basics
	2.2 Architecture
	2.3 Threat Model
	2.4 Limitations of Existing Approaches

	3 TED Design
	3.1 Design Goals
	3.2 Design Overview
	3.3 Sketch-based Frequency Counting
	3.4 Probabilistic Key Generation
	3.5 Automated Parameter Configuration
	3.6 Security Discussion

	4 Implementation
	5 Evaluation
	5.1 Datasets
	5.2 Trade-off Analysis on TED
	5.3 Performance Evaluation on TEDStore

	6 Related Work
	7 Conclusion
	References

