Course code | ENGG2740 |
Course title | Differential Equations for Engineers 微分方程及其工程應用 |
Course description | A first course in the theory and applications of ordinary and partial differential equations. Topics include classification of differential equations, linear ordinary differential equations, Fourier series, and partial differential equations. 本科教授常微分方程和偏微分方程的理論和應用。內容包括:微分方程之分類、線性常微分方程、傅里葉級數和偏微分方程。 |
Unit(s) | 2 |
Course level | Undergraduate |
Exclusion | ENGG2420 or 2460 or ESTR2000 or 2010 or 2016 |
Semester | 2 |
Grading basis | Graded |
Grade Descriptors | A/A-: EXCELLENT – exceptionally good performance and far exceeding expectation in all or most of the course learning outcomes; demonstration of superior understanding of the subject matter, the ability to analyze problems and apply extensive knowledge, and skillful use of concepts and materials to derive proper solutions. B+/B/B-: GOOD – good performance in all course learning outcomes and exceeding expectation in some of them; demonstration of good understanding of the subject matter and the ability to use proper concepts and materials to solve most of the problems encountered. C+/C/C-: FAIR – adequate performance and meeting expectation in all course learning outcomes; demonstration of adequate understanding of the subject matter and the ability to solve simple problems. D+/D: MARGINAL – performance barely meets the expectation in the essential course learning outcomes; demonstration of partial understanding of the subject matter and the ability to solve simple problems. F: FAILURE – performance does not meet the expectation in the essential course learning outcomes; demonstration of serious deficiencies and the need to retake the course. |
Learning outcomes | At the conclusion of the course, students should be able to 1. demonstrate knowledge and understanding of the basic elements of ordinary and partial differential equations 2. model simple engineering problems using differential equations and solve them |
Assessment (for reference only) |
Essay test or exam:65% Homework or assignment:25% Others:10% |
Recommended Reading List | 1. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley, 10th Edition, 2011 2. William E. Boyce, Richard C. DiPrima, and Douglas B. Meade, Elementary Differential Equations and Boundary Value Problems, Wiley, 11th Edition, 2017 |
CSCIN programme learning outcomes | Course mapping |
Upon completion of their studies, students will be able to: | |
1. identify, formulate, and solve computer science problems (K/S); | |
2. design, implement, test, and evaluate a computer system, component, or algorithm to meet desired needs (K/S); |
|
3. receive the broad education necessary to understand the impact of computer science solutions in a global and societal context (K/V); | |
4. communicate effectively (S/V); |
|
5. succeed in research or industry related to computer science (K/S/V); | |
6. have solid knowledge in computer science and engineering, including programming and languages, algorithms, theory, databases, etc. (K/S); | |
7. integrate well into and contribute to the local society and the global community related to computer science (K/S/V); | |
8. practise high standard of professional ethics (V); | |
9. draw on and integrate knowledge from many related areas (K/S/V); |
|
Remarks: K = Knowledge outcomes; S = Skills outcomes; V = Values and attitude outcomes; T = Teach; P = Practice; M = Measured |