Scientific literacy of HK students Implications for curriculum & instruction

What is scientific literacy?

The capacity to:

- use scientific knowledge
- recognise scientific questions
- draw evidence-based conclusions

⇒ to understand and make decisions about the natural world.

Items for assessing scientific literacy:

- Use scientific knowledge.
- Recognise scientific questions.
- Identify evidence.
- Draw or evaluate conclusions.
- Communicate ide </conclusions.

Processes of scientific inquiry

16

3

10

5

Set in real-life situations

• 13 assessment tasks ⇒ 34 items

Marking with 2-digit codes

Performance of HK students in scientific literacy

Percentile	Hong Kong	OECD	Difference
		average	(HK-OECD)
5 th	373	324	49
10 th	412	362	50
25 th	478	427	51
50 th	539	500	39
75 th	608	575	33
90 th	653	634	19
95 th	680	668	12

Lower achievers of Hong Kong are less disadvantaged in scientific literacy.

Implications for curriculum & instruction ?

Majority of HK schools are supported by the government with equal funding & resources.

ALA schools are not disadvantaged in terms of supply of qualified teachers, supporting staff and equipment.

Science curriculum core & extension components

Additional support from EMB and other organisations (CUSP) in various ways:

- Design and implementation of school-based curriculum
- Development of teaching skills that facilitate the learning of low achievers
- > Greater emphasis on learning & thinking skills

Performance in different components of scientific literacy

	Girls		Boys		Difference of
Percentile	Mean	S.E.	Mean	S.E.	the means
5 th	391	8.3	356	11.8	34*
10 th	427	7.2	398	11.4	29*
25 th	483	6.6	472	9.3	11
50 th	547	5.0	549	6.4	-1
75 th	604	3.9	611	4.9	-7
90 th	649	3.7	657	5.4	-8
95 th	675	4.5	685	7.0	-10
Total	- <mark>541</mark>	4.2	<mark>538</mark>	6.1	-3

- -

Performance of Hong Kong girls and boys in different percentiles

Comparison of scores of Hong Kong girls and boys in scientific literacy

Gender difference in different components of scientific literacy

Ability	Gender	Mean score (%)
1. Understanding concepts	Girls	58.5
	Boys	61.4
2. Recognising questions	Girls	52.4
	Boys	48.1
3. Identifying evidence	Girls	58.7
	Boys	56.4
4. Drawing conclusions	Girls	54.0
	Boys	52.6
Processes of scientific	Girls	56.2
inquiry [Abilities 2, 3 and 4]	Boys	53.9

Gender difference in different components of scientific literacy

Performance in different components of scientific literacy

Strength of HK science education:

- Mastery of scientific knowledge
- Junior science encourages integration of practical work with learning of science concepts -

investigatory approach

Adequate supply of trained science teachers

Problems of 'guided discovery' approach

What happens to the colour of the indicator? Exhaled air contains _____ (less/more) carbon dioxide than fresh air.

Why does the flame go out?

Because the burning candle has used up in the air.

What can students learn ?

- manipulative skills
- observation
- drawing conclusions
- but little opportunities to:
- identify problems for investigation
- formulate hypothesis
- design experiments

Deficient in understanding of the nature of scientific knowledge, the potentials & limitations of the scientific process

 important for solving everyday life problems, and to make informed decision on social and personal issues Implications for the science curriculum?

If science education aims at promoting development of scientific literacy ...

Science curriculum (S1-5) should include nature of science Ŷ Historical development of science concepts (e.g. S & T curriculum)

Future PISA studies: Tracking changes in literacy with time

Impact of education reform on literacy

PISA 2006

Student scores at different percentiles (PISA 2000)

Student scores in different grades

