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Introduction
• Show several real-life problems using graphs.

• Give algorithms to solve several common graph 
problems.

• Show how the proper choice of data structures 
can drastically reduce the running time of these 
algorithms.

• See how depth-first search can be used to solve 
several seemingly nontrivial problems in linear 
time.
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Examples

• Algorithms to find the minimum path 
between two nodes

• Algorithms to find whether a graph 
contains another graph

• Algorithms to find the maximum flow 
between two nodes
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Definitions
• Graphs is an important mathematical structure.

• A graph G = (V, E) consists of a set of vertices 
(or nodes), V, and a set of edges, E. 

• Each edge is a pair (v,w), where v,w ∈ V. Edges are 
sometimes referred to as arcs. 

• If e = (v,w) is an edge with vertices v and w, the v 
and w are said to lie on e, and e is said to be 
incident with v and w.  
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Definitions

• If the pairs are unordered, then G is called an 
undirected graph; if the pairs are ordered, 
the G is called a directed graph.  

• The term directed graph is often shortened 
to digraph, and the unqualified term graph 
usually means undirected graph.
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Definition

• Vertex w is adjacent to v if and only if 
(v,w) ∈ E. 

• In an undirected graph with edge (v,w), and 
hence (w,v), w is adjacent to v and v is 
adjacent to w. 

• Sometimes an edge has a third component, 
known as either a weight or a cost.
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Path Definition

• A path in a graph is a sequence of vertices w1, 

w2, w3, . . . , wn such that (wi, wi+1) ∈ E for 1 ≤ i 
< n. 

• The length of such a path is the number of 
edges on the path, which is equal to n - 1.

•  We allow a path from a vertex to itself; if this 
path contains no edges, then the path length is 
0. 
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Path Definition

• If the graph contains an edge (v,v) from a 
vertex to itself, then the path v, v is 
sometimes referred to as a loop. 

•  A simple path is a path such that all 
vertices are distinct, except that the first 
and last could be the same.
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Cycle Definition
• A cycle in a directed graph is a path of 

length at least 1 such that w1 = wn; this 
cycle is simple if the path is simple. 

• For undirected graphs, we require that the 
edges be distinct. 

• Why?
The logic of these requirements is that the path u, v, u 
in an undirected graph should not be considered a cycle, 
because (u, v) and (v, u) are the same edge.
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Cycle Definition

• In a directed graph, these are different 
edges, so it makes sense to call this a cycle. 

• A directed graph is acyclic if it has no 
cycles. 

• A directed acyclic graph is sometimes 
referred to by its abbreviation, DAG.
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Connectedness 
Definition

• An undirected graph is connected if there is a path 
from every vertex to every other vertex. 

• A directed graph with this property is called 
strongly connected. 

• If a directed graph is not strongly connected, but the 
underlying graph (without direction to the arcs) is 
connected, then the graph is said to be weakly 
connected. 

• A complete graph is a graph in which there is an 
edge between every pair of vertices.
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Airport Example

• Each airport is a vertex, and two vertices are 
connected by an edge if there is a nonstop 
flight from the airports that are represented by 
the vertices. 

• The edge could have a weight, representing the 
time, distance, or cost of the flight. 

• Such a graph is directed, since it might take 
longer or cost more to fly in different 
directions.
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Example

• We would probably like to make sure that the 
airport system is strongly connected, so that 
it is always possible to fly from any airport to 
any other airport. 

• We might also like to quickly determine the 
best flight between any two airports. 

• "Best" could mean the path with the fewest 
number of edges or could be taken with respect 
to one, or all, of the weight measures.
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Example
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Implementation
• Use a two-dimensional array.  This is known as an 

adjacency matrix representation. 

• For each edge (u, v), we set a[u][v] = 1; otherwise 
the entry in the array is 0. 

• If the edge has a weight associated with it, then we 
can set a[u][v] equal to the weight and use either a 
very large or a very small weight as a sentinel to 
indicate nonexistent edges.
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Example

• For instance, if we were looking for the 
cheapest airplane route, we could represent 
nonexistent flights with a cost of ∞. 

• If we were looking, for some strange reason, for 
the most expensive airplane route, we could use 
- ∞ (or perhaps 0) to represent nonexistent 
edges.
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Notes

• The space requirement is Θ(|V|2).  This is 
unacceptable if the graph does not have 
very many edges. 

• An adjacency matrix is an appropriate 
representation if the graph is dense: |E| = 
Θ(|V|2).
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Adjacency List

• If the graph is not dense, in other words, if the 
graph is sparse, a better solution is an 
adjacency list representation. 

• For each vertex, we keep a list of all adjacent 
vertices.

• The space requirement is then O(|E| + |V|).

• If the edges have weights, then this additional 
information is also stored in the cells. 
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Example
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Topological
• A topological sort is an ordering of vertices in a 

directed acyclic graph, such that if there is a path 
from vi to vj, then vj appears after vi in the 
ordering. 

• A directed edge (v,w) indicates that course v must 
be completed before course w may be attempted. 

• A topological ordering of these courses is any 
course sequence that does not violate the 
prerequisite requirement.
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Example
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Example
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Notes

• Is topological ordering possible with a cyclic 
graph?

• No, since for two vertices v and w on the cycle, v 
precedes w and w precedes v.

• Is the ordering unique?

• It is not necessarily unique; any legal ordering will 
do. In the next graph, v1, v2, v5, v4, v3, v7, v6 and v1, 

v2, v5, v4, v7, v3, v6 are both topological orderings.
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How to find the topological ordering?

• Define the indegree of a vertex v as the 
number of edges (u,v). We compute the 
indegrees of all vertices in the graph. 

• Find any vertex with no incoming edges (or the 
indegree is 0).

• We can then print this vertex, and remove it, 
along with its edges, from the graph.

• Then we apply this same strategy to the rest of 
the graph.
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Topological Sort 
Pseudocode

topsort( graph G )

{

unsigned int counter;

vertex v, w;

for(counter=0; counter<NUM_VERTEX; counter++){

v = find_new_vertex_of_indegree_zero( );

if( v = NOT_A_VERTEX ) {

error("Graph has a cycle"); break;}

top_num[v] = counter;

for each w adjacent to v

indegree[w]--;}}
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Time Complexity

• How long will the algorithm take to find 
the topological ordering of a graph?

• It is a simple sequential scan of the 
indegree array, each call to it takes O(|V|) 
time. 

• Since there are |V| such calls, the running 
time of the algorithm is O(|V|2).
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Topological Sort Example
        Indegree Before Dequeue #

  Vertex    1   2   3   4   5   6   7

--------------------------------------

    v1      0   0   0   0   0   0   0

    v2      1   0   0   0   0   0   0

    v3      2   1   1   1   0   0   0

    v4      3   2   1   0   0   0   0

    v5      1   1   0   0   0   0   0

    v6      3   3   3   3   2   1   0

    v7      2   2   2   1   0   0   0

--------------------------------------

  enqueue  v1  v2  v5  v4  v3  v7  v6

--------------------------------------

  dequeue  v1  v2  v5  v4  v3  v7  v6
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Shortest Path 
Algorithms

• The input is a weighted graph: associated with 
each edge (vi, vj) is a cost ci,j to traverse the 
arc. 

• The cost of a path v1v2 ... vn is            .

• This is referred to as the weighted path length. 

• The unweighted path length is merely the 
number of edges on the path, namely, n - 1.

ci ,i +1
i=1

n−1

∑
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Single-Source Shortest-Path Problem

• Given as input a weighted graph, G = (V, 
E), and a distinguished vertex, s, find the 
shortest weighted path from s to every 
other vertex in G.



CSC2100B Data Structures, CUHK, Irwin King
30

Example



CSC2100B Data Structures, CUHK, Irwin King
31

Example

• From the previous graph, the shortest weighted 
path from v1 to v6 has a cost of 6 and goes from 

v1 to v4 to v7 to v6. 

• The shortest unweighted path between these 
vertices is 2.
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What if the cost is 
negative?
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Problem

• The path from v5 to v4 has cost 1, but a 
shorter path exists by following the loop 
v5, v4, v2, v5, v4, which has cost -5. 

• The shortest path between v5 and v4 is 
undefined.

• This loop is known as a negative-cost 
cycle; when one is present in the graph, 
the shortest paths are not defined.
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Notes
• Currently there are no algorithms in which finding 

the path from s to one vertex is any faster (by 
more than a constant factor) than finding the path 
from s to all vertices.

• The intermediate nodes in a shortest path must 
also be the shortest path node from s.

• We will examine algorithms to solve four versions 
of this problem.

• The unweighted shortest-path problem and show how 
to solve it in O(|E| + |V|). 
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Notes
• The weighted shortest-path problem if we assume that 

there are no negative edges. 

• The running time for this algorithm is O(|E| log |V|) 
when implemented with reasonable data structures.

• If the graph has negative edges, we will provide a 
simple solution, which unfortunately has a poor time 
bound of O(|E| • |V|). 

• Finally, we will solve the weighted problem for the 
special case of acyclic graphs in linear time.
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Unweighted Shortest 
Paths

• Using some vertex, s, which is an input 
parameter, we would like to find the 
shortest path from s to all other vertices. 

• There are no weights on the edges. 

• This is a special case of the weighted 
shortest-path problem, since we could 
assign all edges a weight of 1.
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Unweighted Shortest 
Paths
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Algorithm

• Suppose we choose s to be v3. 

• The shortest path  from s to v3 is then a path of 
length 0.

• Now we can start looking for all vertices that 
are a distance 1 away from s. 

• These can be found by looking at the vertices that 
are adjacent to s.

• Continue to look for vertices that are a distance 1 
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Example
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Example
 v   Known  dv  pv
------------------

  v1    0    ∞   0

  v2    0    ∞   0

  v3    0    0   0

  v4    0    ∞   0

  v5    0    ∞   0

  v6    0    ∞   0

  v7    0    ∞   0
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Example
     Initial State    v3 Dequeued    v1 Dequeued    v6 Dequeued

     -------------  --------------  -------------  -------------

  v  Known  dv  pv   Known  dv  pv   Known  dv  pv  Known  dv  pv

----------------------------------------------------------------

  v1   0    •   0      0    1   v3    1    1   v3    1    1   v3

  v2   0    •   0      0    •   0     0    2   v1    0    2   v1

  v3   0    0   0      1    0   0     1    0   0     1    0   0

  v4   0    •   0      0    •   0     0    2   v1    0    2   v1

  v5   0    •   0      0    •   0     0    •   0     0    •   0

  v6   0    •   0      0    1   v3    0    1   v3    1    1   v3

  v7   0    •   0      0    •   0     0    •   0     0    •   0

----------------------------------------------------------------

  Q:      v3            v1,v6          v6,v2,v4         v2,v4
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Example
      v2 Dequeued    v4 Dequeued    v5 Dequeued    v7 Dequeued

     -------------  --------------  -------------  -------------

  v   Known  dv  pv  Known  dv  pv  Known  dv  pv  Known  dv  pv

----------------------------------------------------------------

  v1    1    1   v3    1    1   v3    1    1   v3    1    1  v3

  v2    1    2   v1    1    2   v1    1    2   v1    1    2  v1

  v3    1    0   0     1    0   0     1    0   0     1    0  0

  v4    0    2   v1    1    2   v1    1    2   v1    1    2  v1

  v5    0    3   v2    0    3   v2    1    3   v2    1    3  v2

  v6    1    1   v3    1    1   v3    1    1   v3    1    1  v3

  v7    0    •   0     0    3   v4    0    3   v4    1    3  v4

----------------------------------------------------------------

  Q:     v4,v5          v5,v7           v7              empty
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Breadth-first Search

• This strategy for searching a graph is 
known as breadth-first search. 

• It operates by processing vertices in layers: 
the vertices closest to the start are 
evaluated first, and the most distant 
vertices are evaluated last. 

• This is much the same as a level-order 
traversal for trees.
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Notes
• For each vertex, we will keep track of three pieces 

of information. 

• First, we will keep its distance from s in the entry dv. 
Initially all vertices are unreachable except for s, 
whose path length is 0. 

• The entry in pv is the bookkeeping variable, which will 
allow us to print the actual paths.

• The entry known is set to 1 after a vertex is 
processed.  Initially, all entries are unknown, including 
the start vertex.
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Notes
• When a vertex is known, we have a 

guarantee that no cheaper path will ever be 
found, and so processing for that vertex is 
essentially complete.

• What is the running time of the algorithm?

The running time of the algorithm is 
O(|V|2), because of the doubly nested 
for loops.
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Dijkstra's Algorithm

• If the graph is weighted, the problem 
(apparently) becomes harder.

• Still we can use the ideas from the 
unweighted case.
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Outline

• Each vertex is marked as either known or 
unknown. 

• A tentative distance dv is kept for each vertex, 
as before. 

• This distance turns out to be the shortest path 
length from s to v using only known vertices as 
intermediates. 

• As before, we record pv, which is the last vertex 
to cause a change to dv.
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Greedy Algorithm

• The general method to solve the single-
source shortest-path problem is known as 
Dijkstra's algorithm. 

• This thirty-year-old solution is a prime 
example of a greedy algorithm. 

• Greedy algorithms generally solve a 
problem in stages by doing what appears to 
be the best thing at each stage.
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Notes

• Dijkstra's algorithm proceeds in stages.

• At each stage, Dijkstra's algorithm selects a 
vertex v, which has the smallest dv among 
all the unknown vertices, and declares that 
the shortest path from s to v is known. 

• The remainder of a stage consists of 
updating the values of dw.
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Initial Configuration
 v   Known  dv  pv

-------------------

  v1     0    0   0

  v2     0    •   0

  v3     0    •   0

  v4     0    •   0

  v5     0    •   0

  v6     0    •   0

  v7     0    •   0



CSC2100B Data Structures, CUHK, Irwin King
52

After v1 Is Known
 v   Known  dv  pv

--------------------

  v1     1    0   0

  v2     0    2   v1

  v3     0    •   0

  v4     0    1   v1

  v5     0    •   0

  v6     0    •   0

  v7     0    •   0



CSC2100B Data Structures, CUHK, Irwin King
53

After v4 Is Known
 v   Known  dv  pv

--------------------

  v1     1    0   0

  v2     0    2   v1

  v3     0    3   v4

  v4     1    1   v1

  v5     0    3   v4

  v6     0    9   v4
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After v2 Is Known
 v   Known  dv  pv

--------------------

  v1     1    0   0

  v2     1    2   v1

  v3     0    3   v4

  v4     1    1   v1

  v5     0    3   v4

  v6     0    9   v4
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After v5 and v3 Are Known
 v   Known  dv  pv

--------------------

  v1     1    0   0

  v2     1    2   v1

  v3     1    3   v4

  v4     1    1   v1

  v5     1    3   v4

  v6     0    8   v3

  v7     0    5   v4
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After v7 Is Known
 v  Known  dv  pv

-------------------

  v1    1    0   0

  v2    1    2   v1

  v3    1    3   v4

  v4    1    1   v1

  v5    1    3   v4

  v6    0    6   v7
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After v6 Is Known
v  Known  dv  pv

-------------------

  v1    1    0   0

  v2    1    2   v1

  v3    1    3   v4

  v4    1    1   v1

  v5    1    3   v4

  v6    1    6   v7



CSC2100B Data Structures, CUHK, Irwin King
58

Graphs with Negative Edge Costs

• Dijkstra's algorithm does not work with 
negative edge costs.

• A combination of the weighted and unweighted 
algorithms will solve the problem, but at the 
cost of a drastic increase in running time. 

• The running time is O(|E| • |V|) if adjacency lists 
are used.
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Acyclic Graphs

• We can improve Dijkstra's algorithm by changing 
the order in which vertices are declared known, 
otherwise known as the vertex selection rule. 

• The new rule is to select vertices in topological 
order. 

• The algorithm can be done in one pass, since the 
selections and updates can take place as the 
topological sort is being performed.
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Acyclic Graphs

• Why does this selection rule work?

• Because when a vertex v is selected, its 
distance, dv, can no longer be lowered, 

• since by the topological ordering rule it 
has no incoming edges emanating from 
unknown nodes.

• The running time is O(|E| + |V|), since the 
selection takes constant time.
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Applications

• Downhill skiing problem

• Modeling of (nonreversible) chemical reactions.

• Critical path analysis

• Each node represents an activity that must be 
performed, along with the time it takes to 
complete the activity. 

• This graph is thus known as an activity-node 
graph. 
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Activity-node Graph

The edges represent 
precedence 

relationships: An edge 
(v, w) means that 
activity v must be 
completed before 

activity w may begin. 

Of course, this implies 
that the graph must 

be acyclic.
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Notes

• Model construction projects

• What is the earliest completion time for 
the project? 

• We can see from the graph that 10 
time units are required along the path 
A, C, F, H. 
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Notes
• Another important question is to determine 

which activities can be delayed, and by how 
long, without affecting the minimum 
completion time. 

• For instance, delaying any of A, C, F, or H 
would push the completion time past 10 
units. 

• On the other hand, activity B is less 
critical and can be delayed up to two time 
units without affecting the final 
completion time.
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All-Pairs Shortest Path

• Find the shortest paths between all pairs of 
vertices in the graph. 

• Brute Force--Just run the appropriate single-
source algorithm |V| times.

• In Chapter 10, there is an O(|V|3) algorithm to 
solve this problem for weighted graphs.

• On sparse graphs, of course, it is faster to run |
V| Dijkstra's algorithms coded with priority 
queues.
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Network Flow Problems
• Suppose we are given a directed graph G = (V, E) 

with edge capacities cv,w. 

• These capacities could represent the amount of water 
that could flow through a pipe or the amount of traffic 
that could flow on a street between two intersections.

• We have two vertices: s, which we call the 
source, and t, which is the sink. 

• Through any edge, (v, w), at most cv,w units of 
“flow” may pass. 
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Problem

• At any vertex, v, that is not either s or t, 
the total flow coming in must equal the 
total flow going out. 

• The maximum flow problem is to 
determine the maximum amount of flow 
that can pass from s to t.
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Example



CSC2100B Data Structures, CUHK, Irwin King
69

A Simple Maximum-Flow Algorithm

• Gf- a flow graph. It tells the flow that has been 
attained at any stage in the algorithm.

• Initially all edges in Gf have no flow.

– Gf should contain a maximum flow when the algorithm 
terminates. 

• Gr- the residual graph. Gr tells, for each edge, 
how much more flow can be added.

• We calculate this by subtracting the current flow from 
the capacity for each edge. 

• An edge in Gr is known as a residual edge.
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A Simple Maximum-Flow Algorithm

• At each stage, we find a path in Gr from s to t. 

• This path is known as an augmenting path. 

• The minimum edge on this path is the amount of flow that 
can be added to every edge on the path. 

• We do this by adjusting Gf and recomputing Gr. 

• When we find no path from s to t in Gr, we terminate.

• This algorithm is nondeterministic, in that we are free to 
choose any path from s to t.
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Example

 Initial stages of the graph, flow graph, and residual 
graph
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Example

G, Gf, Gr after two units of flow added along s, b, d, t
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Example

G, Gf, Gr after two units of flow added along s, a, c, t
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Example

G, Gf, Gr after one unit of flow added along s, a, d, t 
--algorithm terminates
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Problem
• When t is unreachable from s the algorithm 

terminates. 

• The resulting flow of 5 happens to be the 
maximum. 

• Problem of Not Being Optimal

• Suppose that with our initial graph, we chose the path 
s, a, d, t. 

• The result of this choice is that there is now no longer 
any path from s to t in the residual graph. 
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Example

G, Gf, Gr if initial action is to add three units of 
flow along s, a, d, t -- algorithm terminates with 

suboptimal solution
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How To Make It 
Optimal

• In order to make this algorithm work, we need 
to allow the algorithm to change its mind. 

• To do this, for every edge (v, w) with flow fv,w 
in the flow graph, we will add an edge in the 
residual graph (w, v) of capacity fv,w.

• In effect, we are allowing the algorithm to undo 
its decisions by sending flow back in the 
opposite direction.
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Example

Graphs after three units of flow added along s, 
a, d, t using correct algorithm
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Example
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2 3
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Example
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a b
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Example
s

a b

c d

t

3 2

1

2
4

3

2 3

s

a b
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t

3 2
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2
1
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2 3
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a b
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2
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2 3
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Notes
• In the residual graph, there are edges in both 

directions between a and d.

• Either one more unit of flow can be pushed from a 
to d, or up to three units can be pushed back--we 
can undo flow. 

• Now the algorithm finds the augmenting path s, b, 
d, a, c, t, of flow 2. 

• By pushing two units of flow from d to a, the 
algorithm takes two units of flow away from the 
edge (a, d) and is essentially changing its mind.
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Notes

• If the capacities are all integers and the 
maximum flow is f, then, since each 
augmenting path increases the flow value by 
at least 1, f stages suffice.

• The total running time is O(f • |E|), since 
an augmenting path can be found in O(|E|) 
time by an unweighted shortest-path 
algorithm.
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Bad Case for Augmenting
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Example

s

a b

t

1000000 1000000

1

1000000 1000000

s

a b

t

1000000 1000000

1

1000000 1000000
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Example

s

a b

t

1000000 1000000

1

1000000 1000000

s

a b

t

999999 1000000

1

1000000 9999991

1
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Example

s

a b

t

1000000 1000000

1

1000000 1000000

s

a b

t

999999 999999

1

999999 9999991

1 1

1
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Problem
• The maximum flow is seen by inspection to be 

2,000,000 by sending 1,000,000 down each side. 

• Using the algorithm, 2,000,000 augmentations 
would be required, when we could get by with only 
2.

• Solution--Always to choose the augmenting path 
that allows the largest increase in flow. 

• Finding such a path is similar to solving a 
weighted shortest-path problem.
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Minimum Spanning Tree

• Finding a minimum spanning tree in an 
undirected graph. 

• Informally, a minimum spanning tree of an 
undirected graph G is a tree formed from 
graph edges that connects all the vertices of G 
at lowest total cost. 

• A minimum spanning tree exists if and only if G 
is connected.

• Application--wiring of a house
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Example

Is the minimum 
spanning tree unique?
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Notes

• Notice that the number of edges in the 
minimum spanning tree is |V| - 1. 

• The minimum spanning tree is a tree 
because it is acyclic.

• It is spanning because it covers every 
edge, and it is minimum because the sum of 
all cost is the minimum.
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Prim’s Algorithm

• It is to grow the tree in successive stages.

• In each stage, one node is picked as the root, 
and we add an edge, and thus an associated 
vertex, to the tree.

• The algorithm then finds, at each stage, a new 
vertex to add to the tree by choosing the edge 
(u, v) such that the cost of (u, v) is the smallest 
among all edges where u is in the tree and v is 
not.
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Notes
• Prim's algorithm is essentially identical to Dijkstra's 

algorithm for shortest paths. 

• For each vertex we keep values dv and pv and an 
indication of whether it is known or unknown. 

– dv is the weight of the shortest arc connecting v to a 
known vertex.

– pv, as before, is the last vertex to cause a change in dv . 

• After a vertex v is selected, for each unknown w 
adjacent to v, dv = min(dw, cw,v).
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Example
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Example
 v   Known  dv  pv

--------------------

  v1     0    0   0

  v2     0    •   0

  v3     0    •   0

  v4     0    •   0

  v5     0    •   0

  v6     0    •   0

  v7     0    •   0
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After V1 is Known
 v   Known  dv  pv

--------------------

 v1     1    0   0

  v2     0    2   v1

  v3     0    4   v1

  v4     0    1   v1

  v5     0    •   0

  v6     0    •   0

  v7     0    •   0
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Example
 v   Known  dv  pv

--------------------

 v1     1    0   0

  v2     0    2   v1

  v3     0    2   v4

  v4     1    1   v1

  v5     0    7   v4

  v6     0    8   v4

  v7     0    4   v4
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After V2 and V3 are Known
 v   Known  dv  pv

--------------------

 v1     1    0   0

  v2     1    2   v1

  v3     1    2   v4

  v4     1    1   v1

  v5     0    7   v4

  v6     0    5   v3

  v7     0    4   v4
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After V7 is Known
 v   Known  dv  pv

--------------------

 v1     1    0   0

  v2     1    2   v1

  v3     1    2   v4

  v4     1    1   v1

  v5     0    6   v7

  v6     0    1   v7

  v7     1    4   v4
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After V5 and V6 are Known
 v   Known  dv  pv

--------------------

 v1     1    0   0

  v2     1    2   v1

  v3     1    2   v4

  v4     1    1   v1

  v5     1    6   v7

  v6     1    1   v7

  v7     1    4   v4
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Notes

• Be aware that Prim's algorithm runs on 
undirected graphs, so when coding it, 
remember to put every edge in two 
adjacency lists. 

• The running time is O(|V|2) without heaps, 
which is optimal for dense graphs, and O(|
E| log |V|) using binary heaps, which is good 
for sparse graphs.
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 Kruskal's Algorithm
• A second greedy strategy is continually to select 

the edges in order of smallest weight and accept an 
edge if it does not cause a cycle.

• It maintains a forest-- a collection of trees.

• Initially, there are |V| single-node trees.

• Adding an edge merges two trees into one. When 
the algorithm terminates, there is only one tree, 
and this is the minimum spanning tree.
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Notes
• The algorithm terminates when enough edges are 

accepted. It is simple to decide whether edge (u,v) 
should be accepted or rejected. 

• The appropriate data structure is the union/find 
algorithm.

• The invariant we will use is that at any point in the 
process, two vertices belong to the same set if and 
only if they are connected in the current spanning 
forest.
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Notes

• Thus, each vertex is initially in its own set. 

• If u and v are in the same set, the edge is 
rejected, because since they are already 
connected, adding (u, v) would form a cycle. 

• Otherwise, the edge is accepted, and a union is 
performed on the two sets containing u and v.
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Example
 Edge     Weight    Action

----------------------------

  (v1,v4)    1     Accepted

  (v6,v7)    1     Accepted

  (v1,v2)    2     Accepted

  (v3,v4)    2     Accepted

  (v2,v4)    3     Rejected

  (v1,v3)    4     Rejected

  (v4,v7)    4     Accepted

  (v3,v6)    5     Rejected

  (v5,v7)    6     Accepted
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Notes

• The worst-case running time of this 
algorithm is O(|E| log |E|), which is 
dominated by the heap operations. 

• Notice that since |E| = O(|V|2), this running 
time is actually O(|E| log |V|). 

• In practice, the algorithm is much faster 
than this time bound would indicate.



CSC2100B Data Structures, CUHK, Irwin King
108

Depth-First Search

• Depth-first search is a generalization of 
preorder traversal. 

• Starting at some vertex, v, we process v 
and then recursively traverse all vertices 
adjacent to v. 

• If this process is performed on a tree, then 
all tree vertices are systematically visited in 
a total of O(|E|) time.
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Depth-First Search

• If we perform this process on an arbitrary 
graph, we need to be careful to avoid 
cycles. 

• To do this, when we visit a vertex v, we 
mark it visited, since now we have been 
there, and recursively call depth-first search 
on all adjacent vertices that are not already 
marked.
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Undirected Graph
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DFS Example

A

B D

C

E
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BFS Example

A

B D

C

E


