
CSC2100B Data Structures, CUHK, Irwin King

CSCI2100B Data Structures
Graph Algorithms

Irwin King

king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

Department of Computer Science & Engineering
The Chinese University of Hong Kong

mailto:king@cse.cuhk.edu.hk
mailto:king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king
http://www.cse.cuhk.edu.hk/~king

CSC2100B Data Structures, CUHK, Irwin King
2

Introduction
• Show several real-life problems using graphs.

• Give algorithms to solve several common graph
problems.

• Show how the proper choice of data structures
can drastically reduce the running time of these
algorithms.

• See how depth-first search can be used to solve
several seemingly nontrivial problems in linear
time.

CSC2100B Data Structures, CUHK, Irwin King
3

Examples

• Algorithms to find the minimum path
between two nodes

• Algorithms to find whether a graph
contains another graph

• Algorithms to find the maximum flow
between two nodes

CSC2100B Data Structures, CUHK, Irwin King
4

Definitions
• Graphs is an important mathematical structure.

• A graph G = (V, E) consists of a set of vertices
(or nodes), V, and a set of edges, E.

• Each edge is a pair (v,w), where v,w ∈ V. Edges are
sometimes referred to as arcs.

• If e = (v,w) is an edge with vertices v and w, the v
and w are said to lie on e, and e is said to be
incident with v and w.

CSC2100B Data Structures, CUHK, Irwin King
5

Definitions

• If the pairs are unordered, then G is called an
undirected graph; if the pairs are ordered,
the G is called a directed graph.

• The term directed graph is often shortened
to digraph, and the unqualified term graph
usually means undirected graph.

CSC2100B Data Structures, CUHK, Irwin King
6

Definition

• Vertex w is adjacent to v if and only if
(v,w) ∈ E.

• In an undirected graph with edge (v,w), and
hence (w,v), w is adjacent to v and v is
adjacent to w.

• Sometimes an edge has a third component,
known as either a weight or a cost.

CSC2100B Data Structures, CUHK, Irwin King
7

Path Definition

• A path in a graph is a sequence of vertices w1,

w2, w3, . . . , wn such that (wi, wi+1) ∈ E for 1 ≤ i
< n.

• The length of such a path is the number of
edges on the path, which is equal to n - 1.

• We allow a path from a vertex to itself; if this
path contains no edges, then the path length is
0.

CSC2100B Data Structures, CUHK, Irwin King
8

Path Definition

• If the graph contains an edge (v,v) from a
vertex to itself, then the path v, v is
sometimes referred to as a loop.

• A simple path is a path such that all
vertices are distinct, except that the first
and last could be the same.

CSC2100B Data Structures, CUHK, Irwin King
9

Cycle Definition
• A cycle in a directed graph is a path of

length at least 1 such that w1 = wn; this
cycle is simple if the path is simple.

• For undirected graphs, we require that the
edges be distinct.

• Why?
The logic of these requirements is that the path u, v, u
in an undirected graph should not be considered a cycle,
because (u, v) and (v, u) are the same edge.

CSC2100B Data Structures, CUHK, Irwin King
10

Cycle Definition

• In a directed graph, these are different
edges, so it makes sense to call this a cycle.

• A directed graph is acyclic if it has no
cycles.

• A directed acyclic graph is sometimes
referred to by its abbreviation, DAG.

CSC2100B Data Structures, CUHK, Irwin King
11

Connectedness
Definition

• An undirected graph is connected if there is a path
from every vertex to every other vertex.

• A directed graph with this property is called
strongly connected.

• If a directed graph is not strongly connected, but the
underlying graph (without direction to the arcs) is
connected, then the graph is said to be weakly
connected.

• A complete graph is a graph in which there is an
edge between every pair of vertices.

CSC2100B Data Structures, CUHK, Irwin King
12

Airport Example

• Each airport is a vertex, and two vertices are
connected by an edge if there is a nonstop
flight from the airports that are represented by
the vertices.

• The edge could have a weight, representing the
time, distance, or cost of the flight.

• Such a graph is directed, since it might take
longer or cost more to fly in different
directions.

CSC2100B Data Structures, CUHK, Irwin King
13

Example

• We would probably like to make sure that the
airport system is strongly connected, so that
it is always possible to fly from any airport to
any other airport.

• We might also like to quickly determine the
best flight between any two airports.

• "Best" could mean the path with the fewest
number of edges or could be taken with respect
to one, or all, of the weight measures.

CSC2100B Data Structures, CUHK, Irwin King
14

Example

CSC2100B Data Structures, CUHK, Irwin King
15

Implementation
• Use a two-dimensional array. This is known as an

adjacency matrix representation.

• For each edge (u, v), we set a[u][v] = 1; otherwise
the entry in the array is 0.

• If the edge has a weight associated with it, then we
can set a[u][v] equal to the weight and use either a
very large or a very small weight as a sentinel to
indicate nonexistent edges.

CSC2100B Data Structures, CUHK, Irwin King
16

Example

• For instance, if we were looking for the
cheapest airplane route, we could represent
nonexistent flights with a cost of ∞.

• If we were looking, for some strange reason, for
the most expensive airplane route, we could use
- ∞ (or perhaps 0) to represent nonexistent
edges.

CSC2100B Data Structures, CUHK, Irwin King
17

Notes

• The space requirement is Θ(|V|2). This is
unacceptable if the graph does not have
very many edges.

• An adjacency matrix is an appropriate
representation if the graph is dense: |E| =
Θ(|V|2).

CSC2100B Data Structures, CUHK, Irwin King
18

Adjacency List

• If the graph is not dense, in other words, if the
graph is sparse, a better solution is an
adjacency list representation.

• For each vertex, we keep a list of all adjacent
vertices.

• The space requirement is then O(|E| + |V|).

• If the edges have weights, then this additional
information is also stored in the cells.

CSC2100B Data Structures, CUHK, Irwin King
19

Example

CSC2100B Data Structures, CUHK, Irwin King
20

Topological
• A topological sort is an ordering of vertices in a

directed acyclic graph, such that if there is a path
from vi to vj, then vj appears after vi in the
ordering.

• A directed edge (v,w) indicates that course v must
be completed before course w may be attempted.

• A topological ordering of these courses is any
course sequence that does not violate the
prerequisite requirement.

CSC2100B Data Structures, CUHK, Irwin King
21

Example

CSC2100B Data Structures, CUHK, Irwin King
22

Example

CSC2100B Data Structures, CUHK, Irwin King
23

Notes

• Is topological ordering possible with a cyclic
graph?

• No, since for two vertices v and w on the cycle, v
precedes w and w precedes v.

• Is the ordering unique?

• It is not necessarily unique; any legal ordering will
do. In the next graph, v1, v2, v5, v4, v3, v7, v6 and v1,

v2, v5, v4, v7, v3, v6 are both topological orderings.

CSC2100B Data Structures, CUHK, Irwin King
24

How to find the topological ordering?

• Define the indegree of a vertex v as the
number of edges (u,v). We compute the
indegrees of all vertices in the graph.

• Find any vertex with no incoming edges (or the
indegree is 0).

• We can then print this vertex, and remove it,
along with its edges, from the graph.

• Then we apply this same strategy to the rest of
the graph.

CSC2100B Data Structures, CUHK, Irwin King
25

Topological Sort
Pseudocode

topsort(graph G)

{

unsigned int counter;

vertex v, w;

for(counter=0; counter<NUM_VERTEX; counter++){

v = find_new_vertex_of_indegree_zero();

if(v = NOT_A_VERTEX) {

error("Graph has a cycle"); break;}

top_num[v] = counter;

for each w adjacent to v

indegree[w]--;}}

CSC2100B Data Structures, CUHK, Irwin King
26

Time Complexity

• How long will the algorithm take to find
the topological ordering of a graph?

• It is a simple sequential scan of the
indegree array, each call to it takes O(|V|)
time.

• Since there are |V| such calls, the running
time of the algorithm is O(|V|2).

CSC2100B Data Structures, CUHK, Irwin King
27

Topological Sort Example
 Indegree Before Dequeue #

 Vertex 1 2 3 4 5 6 7

 v1 0 0 0 0 0 0 0

 v2 1 0 0 0 0 0 0

 v3 2 1 1 1 0 0 0

 v4 3 2 1 0 0 0 0

 v5 1 1 0 0 0 0 0

 v6 3 3 3 3 2 1 0

 v7 2 2 2 1 0 0 0

 enqueue v1 v2 v5 v4 v3 v7 v6

 dequeue v1 v2 v5 v4 v3 v7 v6

CSC2100B Data Structures, CUHK, Irwin King
28

Shortest Path
Algorithms

• The input is a weighted graph: associated with
each edge (vi, vj) is a cost ci,j to traverse the
arc.

• The cost of a path v1v2 ... vn is .

• This is referred to as the weighted path length.

• The unweighted path length is merely the
number of edges on the path, namely, n - 1.

ci ,i +1
i=1

n−1

∑

CSC2100B Data Structures, CUHK, Irwin King
29

Single-Source Shortest-Path Problem

• Given as input a weighted graph, G = (V,
E), and a distinguished vertex, s, find the
shortest weighted path from s to every
other vertex in G.

CSC2100B Data Structures, CUHK, Irwin King
30

Example

CSC2100B Data Structures, CUHK, Irwin King
31

Example

• From the previous graph, the shortest weighted
path from v1 to v6 has a cost of 6 and goes from

v1 to v4 to v7 to v6.

• The shortest unweighted path between these
vertices is 2.

CSC2100B Data Structures, CUHK, Irwin King
32

What if the cost is
negative?

CSC2100B Data Structures, CUHK, Irwin King
33

Problem

• The path from v5 to v4 has cost 1, but a
shorter path exists by following the loop
v5, v4, v2, v5, v4, which has cost -5.

• The shortest path between v5 and v4 is
undefined.

• This loop is known as a negative-cost
cycle; when one is present in the graph,
the shortest paths are not defined.

CSC2100B Data Structures, CUHK, Irwin King
34

Notes
• Currently there are no algorithms in which finding

the path from s to one vertex is any faster (by
more than a constant factor) than finding the path
from s to all vertices.

• The intermediate nodes in a shortest path must
also be the shortest path node from s.

• We will examine algorithms to solve four versions
of this problem.

• The unweighted shortest-path problem and show how
to solve it in O(|E| + |V|).

CSC2100B Data Structures, CUHK, Irwin King
35

Notes
• The weighted shortest-path problem if we assume that

there are no negative edges.

• The running time for this algorithm is O(|E| log |V|)
when implemented with reasonable data structures.

• If the graph has negative edges, we will provide a
simple solution, which unfortunately has a poor time
bound of O(|E| • |V|).

• Finally, we will solve the weighted problem for the
special case of acyclic graphs in linear time.

CSC2100B Data Structures, CUHK, Irwin King
36

Unweighted Shortest
Paths

• Using some vertex, s, which is an input
parameter, we would like to find the
shortest path from s to all other vertices.

• There are no weights on the edges.

• This is a special case of the weighted
shortest-path problem, since we could
assign all edges a weight of 1.

CSC2100B Data Structures, CUHK, Irwin King
37

Unweighted Shortest
Paths

CSC2100B Data Structures, CUHK, Irwin King
38

Algorithm

• Suppose we choose s to be v3.

• The shortest path from s to v3 is then a path of
length 0.

• Now we can start looking for all vertices that
are a distance 1 away from s.

• These can be found by looking at the vertices that
are adjacent to s.

• Continue to look for vertices that are a distance 1

CSC2100B Data Structures, CUHK, Irwin King
39

Example

CSC2100B Data Structures, CUHK, Irwin King
40

Example
 v Known dv pv

 v1 0 ∞ 0

 v2 0 ∞ 0

 v3 0 0 0

 v4 0 ∞ 0

 v5 0 ∞ 0

 v6 0 ∞ 0

 v7 0 ∞ 0

CSC2100B Data Structures, CUHK, Irwin King
41

Example
 Initial State v3 Dequeued v1 Dequeued v6 Dequeued

 ------------- -------------- ------------- -------------

 v Known dv pv Known dv pv Known dv pv Known dv pv

--

 v1 0 • 0 0 1 v3 1 1 v3 1 1 v3

 v2 0 • 0 0 • 0 0 2 v1 0 2 v1

 v3 0 0 0 1 0 0 1 0 0 1 0 0

 v4 0 • 0 0 • 0 0 2 v1 0 2 v1

 v5 0 • 0 0 • 0 0 • 0 0 • 0

 v6 0 • 0 0 1 v3 0 1 v3 1 1 v3

 v7 0 • 0 0 • 0 0 • 0 0 • 0

--

 Q: v3 v1,v6 v6,v2,v4 v2,v4

CSC2100B Data Structures, CUHK, Irwin King
42

Example
 v2 Dequeued v4 Dequeued v5 Dequeued v7 Dequeued

 ------------- -------------- ------------- -------------

 v Known dv pv Known dv pv Known dv pv Known dv pv

--

 v1 1 1 v3 1 1 v3 1 1 v3 1 1 v3

 v2 1 2 v1 1 2 v1 1 2 v1 1 2 v1

 v3 1 0 0 1 0 0 1 0 0 1 0 0

 v4 0 2 v1 1 2 v1 1 2 v1 1 2 v1

 v5 0 3 v2 0 3 v2 1 3 v2 1 3 v2

 v6 1 1 v3 1 1 v3 1 1 v3 1 1 v3

 v7 0 • 0 0 3 v4 0 3 v4 1 3 v4

--

 Q: v4,v5 v5,v7 v7 empty

CSC2100B Data Structures, CUHK, Irwin King
43

Breadth-first Search

• This strategy for searching a graph is
known as breadth-first search.

• It operates by processing vertices in layers:
the vertices closest to the start are
evaluated first, and the most distant
vertices are evaluated last.

• This is much the same as a level-order
traversal for trees.

CSC2100B Data Structures, CUHK, Irwin King
44

Notes
• For each vertex, we will keep track of three pieces

of information.

• First, we will keep its distance from s in the entry dv.
Initially all vertices are unreachable except for s,
whose path length is 0.

• The entry in pv is the bookkeeping variable, which will
allow us to print the actual paths.

• The entry known is set to 1 after a vertex is
processed. Initially, all entries are unknown, including
the start vertex.

CSC2100B Data Structures, CUHK, Irwin King
45

Notes
• When a vertex is known, we have a

guarantee that no cheaper path will ever be
found, and so processing for that vertex is
essentially complete.

• What is the running time of the algorithm?

The running time of the algorithm is
O(|V|2), because of the doubly nested
for loops.

CSC2100B Data Structures, CUHK, Irwin King
46

Dijkstra's Algorithm

• If the graph is weighted, the problem
(apparently) becomes harder.

• Still we can use the ideas from the
unweighted case.

CSC2100B Data Structures, CUHK, Irwin King
47

Outline

• Each vertex is marked as either known or
unknown.

• A tentative distance dv is kept for each vertex,
as before.

• This distance turns out to be the shortest path
length from s to v using only known vertices as
intermediates.

• As before, we record pv, which is the last vertex
to cause a change to dv.

CSC2100B Data Structures, CUHK, Irwin King
48

Greedy Algorithm

• The general method to solve the single-
source shortest-path problem is known as
Dijkstra's algorithm.

• This thirty-year-old solution is a prime
example of a greedy algorithm.

• Greedy algorithms generally solve a
problem in stages by doing what appears to
be the best thing at each stage.

CSC2100B Data Structures, CUHK, Irwin King
49

Notes

• Dijkstra's algorithm proceeds in stages.

• At each stage, Dijkstra's algorithm selects a
vertex v, which has the smallest dv among
all the unknown vertices, and declares that
the shortest path from s to v is known.

• The remainder of a stage consists of
updating the values of dw.

CSC2100B Data Structures, CUHK, Irwin King
50

CSC2100B Data Structures, CUHK, Irwin King
51

Initial Configuration
 v Known dv pv

 v1 0 0 0

 v2 0 • 0

 v3 0 • 0

 v4 0 • 0

 v5 0 • 0

 v6 0 • 0

 v7 0 • 0

CSC2100B Data Structures, CUHK, Irwin King
52

After v1 Is Known
 v Known dv pv

 v1 1 0 0

 v2 0 2 v1

 v3 0 • 0

 v4 0 1 v1

 v5 0 • 0

 v6 0 • 0

 v7 0 • 0

CSC2100B Data Structures, CUHK, Irwin King
53

After v4 Is Known
 v Known dv pv

 v1 1 0 0

 v2 0 2 v1

 v3 0 3 v4

 v4 1 1 v1

 v5 0 3 v4

 v6 0 9 v4

CSC2100B Data Structures, CUHK, Irwin King
54

After v2 Is Known
 v Known dv pv

 v1 1 0 0

 v2 1 2 v1

 v3 0 3 v4

 v4 1 1 v1

 v5 0 3 v4

 v6 0 9 v4

CSC2100B Data Structures, CUHK, Irwin King
55

After v5 and v3 Are Known
 v Known dv pv

 v1 1 0 0

 v2 1 2 v1

 v3 1 3 v4

 v4 1 1 v1

 v5 1 3 v4

 v6 0 8 v3

 v7 0 5 v4

CSC2100B Data Structures, CUHK, Irwin King
56

After v7 Is Known
 v Known dv pv

 v1 1 0 0

 v2 1 2 v1

 v3 1 3 v4

 v4 1 1 v1

 v5 1 3 v4

 v6 0 6 v7

CSC2100B Data Structures, CUHK, Irwin King
57

After v6 Is Known
v Known dv pv

 v1 1 0 0

 v2 1 2 v1

 v3 1 3 v4

 v4 1 1 v1

 v5 1 3 v4

 v6 1 6 v7

CSC2100B Data Structures, CUHK, Irwin King
58

Graphs with Negative Edge Costs

• Dijkstra's algorithm does not work with
negative edge costs.

• A combination of the weighted and unweighted
algorithms will solve the problem, but at the
cost of a drastic increase in running time.

• The running time is O(|E| • |V|) if adjacency lists
are used.

CSC2100B Data Structures, CUHK, Irwin King
59

Acyclic Graphs

• We can improve Dijkstra's algorithm by changing
the order in which vertices are declared known,
otherwise known as the vertex selection rule.

• The new rule is to select vertices in topological
order.

• The algorithm can be done in one pass, since the
selections and updates can take place as the
topological sort is being performed.

CSC2100B Data Structures, CUHK, Irwin King
60

Acyclic Graphs

• Why does this selection rule work?

• Because when a vertex v is selected, its
distance, dv, can no longer be lowered,

• since by the topological ordering rule it
has no incoming edges emanating from
unknown nodes.

• The running time is O(|E| + |V|), since the
selection takes constant time.

CSC2100B Data Structures, CUHK, Irwin King
61

Applications

• Downhill skiing problem

• Modeling of (nonreversible) chemical reactions.

• Critical path analysis

• Each node represents an activity that must be
performed, along with the time it takes to
complete the activity.

• This graph is thus known as an activity-node
graph.

CSC2100B Data Structures, CUHK, Irwin King
62

Activity-node Graph

The edges represent
precedence

relationships: An edge
(v, w) means that
activity v must be
completed before

activity w may begin.

Of course, this implies
that the graph must

be acyclic.

CSC2100B Data Structures, CUHK, Irwin King
63

Notes

• Model construction projects

• What is the earliest completion time for
the project?

• We can see from the graph that 10
time units are required along the path
A, C, F, H.

CSC2100B Data Structures, CUHK, Irwin King
64

Notes
• Another important question is to determine

which activities can be delayed, and by how
long, without affecting the minimum
completion time.

• For instance, delaying any of A, C, F, or H
would push the completion time past 10
units.

• On the other hand, activity B is less
critical and can be delayed up to two time
units without affecting the final
completion time.

CSC2100B Data Structures, CUHK, Irwin King
65

All-Pairs Shortest Path

• Find the shortest paths between all pairs of
vertices in the graph.

• Brute Force--Just run the appropriate single-
source algorithm |V| times.

• In Chapter 10, there is an O(|V|3) algorithm to
solve this problem for weighted graphs.

• On sparse graphs, of course, it is faster to run |
V| Dijkstra's algorithms coded with priority
queues.

CSC2100B Data Structures, CUHK, Irwin King
66

Network Flow Problems
• Suppose we are given a directed graph G = (V, E)

with edge capacities cv,w.

• These capacities could represent the amount of water
that could flow through a pipe or the amount of traffic
that could flow on a street between two intersections.

• We have two vertices: s, which we call the
source, and t, which is the sink.

• Through any edge, (v, w), at most cv,w units of
“flow” may pass.

CSC2100B Data Structures, CUHK, Irwin King
67

Problem

• At any vertex, v, that is not either s or t,
the total flow coming in must equal the
total flow going out.

• The maximum flow problem is to
determine the maximum amount of flow
that can pass from s to t.

CSC2100B Data Structures, CUHK, Irwin King
68

Example

CSC2100B Data Structures, CUHK, Irwin King
69

A Simple Maximum-Flow Algorithm

• Gf- a flow graph. It tells the flow that has been
attained at any stage in the algorithm.

• Initially all edges in Gf have no flow.

– Gf should contain a maximum flow when the algorithm
terminates.

• Gr- the residual graph. Gr tells, for each edge,
how much more flow can be added.

• We calculate this by subtracting the current flow from
the capacity for each edge.

• An edge in Gr is known as a residual edge.

CSC2100B Data Structures, CUHK, Irwin King
70

A Simple Maximum-Flow Algorithm

• At each stage, we find a path in Gr from s to t.

• This path is known as an augmenting path.

• The minimum edge on this path is the amount of flow that
can be added to every edge on the path.

• We do this by adjusting Gf and recomputing Gr.

• When we find no path from s to t in Gr, we terminate.

• This algorithm is nondeterministic, in that we are free to
choose any path from s to t.

CSC2100B Data Structures, CUHK, Irwin King
71

Example

 Initial stages of the graph, flow graph, and residual
graph

CSC2100B Data Structures, CUHK, Irwin King
72

Example

G, Gf, Gr after two units of flow added along s, b, d, t

CSC2100B Data Structures, CUHK, Irwin King
73

Example

G, Gf, Gr after two units of flow added along s, a, c, t

CSC2100B Data Structures, CUHK, Irwin King
74

Example

G, Gf, Gr after one unit of flow added along s, a, d, t
--algorithm terminates

CSC2100B Data Structures, CUHK, Irwin King
75

Problem
• When t is unreachable from s the algorithm

terminates.

• The resulting flow of 5 happens to be the
maximum.

• Problem of Not Being Optimal

• Suppose that with our initial graph, we chose the path
s, a, d, t.

• The result of this choice is that there is now no longer
any path from s to t in the residual graph.

CSC2100B Data Structures, CUHK, Irwin King
76

Example

G, Gf, Gr if initial action is to add three units of
flow along s, a, d, t -- algorithm terminates with

suboptimal solution

CSC2100B Data Structures, CUHK, Irwin King
77

How To Make It
Optimal

• In order to make this algorithm work, we need
to allow the algorithm to change its mind.

• To do this, for every edge (v, w) with flow fv,w
in the flow graph, we will add an edge in the
residual graph (w, v) of capacity fv,w.

• In effect, we are allowing the algorithm to undo
its decisions by sending flow back in the
opposite direction.

CSC2100B Data Structures, CUHK, Irwin King
78

Example

Graphs after three units of flow added along s,
a, d, t using correct algorithm

CSC2100B Data Structures, CUHK, Irwin King
79

Example
s

a b

c d

t

3 2

1

2
4

3

2 3

s

a b

c d

t

0 0

0

0
0

0

0 0

s

a b

c d

t

3 2

1

2
4

3

2 3

CSC2100B Data Structures, CUHK, Irwin King
80

Example
s

a b

c d

t

3 2

1

2
4

3

2 3

s

a b

c d

t

3 0

0

0
3

0

0 3

s

a b

c d

t

3 2

1

2
1

3

2 3

3

CSC2100B Data Structures, CUHK, Irwin King
81

Example
s

a b

c d

t

3 2

1

2
4

3

2 3

s

a b

c d

t

3 2

0

2
1

2

2 3

s

a b

c d

t

3 2

1

2
3

1

2 3

12

CSC2100B Data Structures, CUHK, Irwin King
82

Notes
• In the residual graph, there are edges in both

directions between a and d.

• Either one more unit of flow can be pushed from a
to d, or up to three units can be pushed back--we
can undo flow.

• Now the algorithm finds the augmenting path s, b,
d, a, c, t, of flow 2.

• By pushing two units of flow from d to a, the
algorithm takes two units of flow away from the
edge (a, d) and is essentially changing its mind.

CSC2100B Data Structures, CUHK, Irwin King
83

Notes

• If the capacities are all integers and the
maximum flow is f, then, since each
augmenting path increases the flow value by
at least 1, f stages suffice.

• The total running time is O(f • |E|), since
an augmenting path can be found in O(|E|)
time by an unweighted shortest-path
algorithm.

CSC2100B Data Structures, CUHK, Irwin King
84

Bad Case for Augmenting

CSC2100B Data Structures, CUHK, Irwin King
85

Example

s

a b

t

1000000 1000000

1

1000000 1000000

s

a b

t

1000000 1000000

1

1000000 1000000

CSC2100B Data Structures, CUHK, Irwin King
86

Example

s

a b

t

1000000 1000000

1

1000000 1000000

s

a b

t

999999 1000000

1

1000000 9999991

1

CSC2100B Data Structures, CUHK, Irwin King
87

Example

s

a b

t

1000000 1000000

1

1000000 1000000

s

a b

t

999999 999999

1

999999 9999991

1 1

1

CSC2100B Data Structures, CUHK, Irwin King
88

Problem
• The maximum flow is seen by inspection to be

2,000,000 by sending 1,000,000 down each side.

• Using the algorithm, 2,000,000 augmentations
would be required, when we could get by with only
2.

• Solution--Always to choose the augmenting path
that allows the largest increase in flow.

• Finding such a path is similar to solving a
weighted shortest-path problem.

CSC2100B Data Structures, CUHK, Irwin King
89

Minimum Spanning Tree

• Finding a minimum spanning tree in an
undirected graph.

• Informally, a minimum spanning tree of an
undirected graph G is a tree formed from
graph edges that connects all the vertices of G
at lowest total cost.

• A minimum spanning tree exists if and only if G
is connected.

• Application--wiring of a house

CSC2100B Data Structures, CUHK, Irwin King
90

Example

Is the minimum
spanning tree unique?

CSC2100B Data Structures, CUHK, Irwin King
91

Notes

• Notice that the number of edges in the
minimum spanning tree is |V| - 1.

• The minimum spanning tree is a tree
because it is acyclic.

• It is spanning because it covers every
edge, and it is minimum because the sum of
all cost is the minimum.

CSC2100B Data Structures, CUHK, Irwin King
92

Prim’s Algorithm

• It is to grow the tree in successive stages.

• In each stage, one node is picked as the root,
and we add an edge, and thus an associated
vertex, to the tree.

• The algorithm then finds, at each stage, a new
vertex to add to the tree by choosing the edge
(u, v) such that the cost of (u, v) is the smallest
among all edges where u is in the tree and v is
not.

CSC2100B Data Structures, CUHK, Irwin King
93

Notes
• Prim's algorithm is essentially identical to Dijkstra's

algorithm for shortest paths.

• For each vertex we keep values dv and pv and an
indication of whether it is known or unknown.

– dv is the weight of the shortest arc connecting v to a
known vertex.

– pv, as before, is the last vertex to cause a change in dv .

• After a vertex v is selected, for each unknown w
adjacent to v, dv = min(dw, cw,v).

CSC2100B Data Structures, CUHK, Irwin King
94

Example

CSC2100B Data Structures, CUHK, Irwin King
95

Example
 v Known dv pv

 v1 0 0 0

 v2 0 • 0

 v3 0 • 0

 v4 0 • 0

 v5 0 • 0

 v6 0 • 0

 v7 0 • 0

CSC2100B Data Structures, CUHK, Irwin King
96

After V1 is Known
 v Known dv pv

 v1 1 0 0

 v2 0 2 v1

 v3 0 4 v1

 v4 0 1 v1

 v5 0 • 0

 v6 0 • 0

 v7 0 • 0

CSC2100B Data Structures, CUHK, Irwin King
97

Example
 v Known dv pv

 v1 1 0 0

 v2 0 2 v1

 v3 0 2 v4

 v4 1 1 v1

 v5 0 7 v4

 v6 0 8 v4

 v7 0 4 v4

CSC2100B Data Structures, CUHK, Irwin King
98

After V2 and V3 are Known
 v Known dv pv

 v1 1 0 0

 v2 1 2 v1

 v3 1 2 v4

 v4 1 1 v1

 v5 0 7 v4

 v6 0 5 v3

 v7 0 4 v4

CSC2100B Data Structures, CUHK, Irwin King
99

After V7 is Known
 v Known dv pv

 v1 1 0 0

 v2 1 2 v1

 v3 1 2 v4

 v4 1 1 v1

 v5 0 6 v7

 v6 0 1 v7

 v7 1 4 v4

CSC2100B Data Structures, CUHK, Irwin King
100

After V5 and V6 are Known
 v Known dv pv

 v1 1 0 0

 v2 1 2 v1

 v3 1 2 v4

 v4 1 1 v1

 v5 1 6 v7

 v6 1 1 v7

 v7 1 4 v4

CSC2100B Data Structures, CUHK, Irwin King
101

Notes

• Be aware that Prim's algorithm runs on
undirected graphs, so when coding it,
remember to put every edge in two
adjacency lists.

• The running time is O(|V|2) without heaps,
which is optimal for dense graphs, and O(|
E| log |V|) using binary heaps, which is good
for sparse graphs.

CSC2100B Data Structures, CUHK, Irwin King
102

 Kruskal's Algorithm
• A second greedy strategy is continually to select

the edges in order of smallest weight and accept an
edge if it does not cause a cycle.

• It maintains a forest-- a collection of trees.

• Initially, there are |V| single-node trees.

• Adding an edge merges two trees into one. When
the algorithm terminates, there is only one tree,
and this is the minimum spanning tree.

CSC2100B Data Structures, CUHK, Irwin King
103

CSC2100B Data Structures, CUHK, Irwin King
104

Notes
• The algorithm terminates when enough edges are

accepted. It is simple to decide whether edge (u,v)
should be accepted or rejected.

• The appropriate data structure is the union/find
algorithm.

• The invariant we will use is that at any point in the
process, two vertices belong to the same set if and
only if they are connected in the current spanning
forest.

CSC2100B Data Structures, CUHK, Irwin King
105

Notes

• Thus, each vertex is initially in its own set.

• If u and v are in the same set, the edge is
rejected, because since they are already
connected, adding (u, v) would form a cycle.

• Otherwise, the edge is accepted, and a union is
performed on the two sets containing u and v.

CSC2100B Data Structures, CUHK, Irwin King
106

Example
 Edge Weight Action

 (v1,v4) 1 Accepted

 (v6,v7) 1 Accepted

 (v1,v2) 2 Accepted

 (v3,v4) 2 Accepted

 (v2,v4) 3 Rejected

 (v1,v3) 4 Rejected

 (v4,v7) 4 Accepted

 (v3,v6) 5 Rejected

 (v5,v7) 6 Accepted

CSC2100B Data Structures, CUHK, Irwin King
107

Notes

• The worst-case running time of this
algorithm is O(|E| log |E|), which is
dominated by the heap operations.

• Notice that since |E| = O(|V|2), this running
time is actually O(|E| log |V|).

• In practice, the algorithm is much faster
than this time bound would indicate.

CSC2100B Data Structures, CUHK, Irwin King
108

Depth-First Search

• Depth-first search is a generalization of
preorder traversal.

• Starting at some vertex, v, we process v
and then recursively traverse all vertices
adjacent to v.

• If this process is performed on a tree, then
all tree vertices are systematically visited in
a total of O(|E|) time.

CSC2100B Data Structures, CUHK, Irwin King
109

Depth-First Search

• If we perform this process on an arbitrary
graph, we need to be careful to avoid
cycles.

• To do this, when we visit a vertex v, we
mark it visited, since now we have been
there, and recursively call depth-first search
on all adjacent vertices that are not already
marked.

CSC2100B Data Structures, CUHK, Irwin King
110

Undirected Graph

CSC2100B Data Structures, CUHK, Irwin King
111

DFS Example

A

B D

C

E

CSC2100B Data Structures, CUHK, Irwin King
112

BFS Example

A

B D

C

E

