
CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

CSC2100B Data Structures
Analysis

Irwin King

king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

Department of Computer Science & Engineering
The Chinese University of Hong Kong

mailto:king@cse.cuhk.edu.hk
mailto:king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king
http://www.cse.cuhk.edu.hk/~king

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Algorithm

• An algorithm is a clearly specified set of simple
instructions to be followed to solve a problem.

• How to estimate the time required for a program.

• How to reduce the running time of a program from
days or years to fractions of a second.

• What is the storage complexity of the program.

• How to deal with trade-offs.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Running Time

• There are two contradictory goals:

• We would like an algorithm that is easy to understand, code,
and debug.

• We would like an algorithm that makes efficient use of the
computer's resources, especially, one that runs as fast as
possible.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Function Comparison

• Given two functions, f(N) and g(N), what does it mean
when we say that
	

 	

 	

 f(N) < g(N)?

• Should this hold for all N?

• We need to compare their relative rates of growth.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html
http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Why Use Bounds

• The idea is to establish a relative order among
functions.

• We are more concerned about the relative rates
of growth of functions.

• For example, which function is greater, 1,000N or
N2?

• The turning point is N = 1,000 where N2 will be
greater for larger N.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

First Definition

• It says that there is some point n0 past which
c f(N) is always at least as large as T(N).

• In our case, T(N) = 1000N, f(N) = N2, n0 = 1,000,
and c = 1.

• We could also use n0 = 10, and c = 100.

• So we can say that 1000N = O(N2).

• It is an upper bound on T(N).

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Other Definitions

• The second definition says that the growth rate of
T(N) is greater than or equal to that of g(N).

• The third definition says that the growth rate of
T(N) equals the growth rate of h(N).

• The fourth definition says that the growth rate of
T(N) is less than the growth rate of p(N).

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Big-O Notation

• If f(n) and g(n) are functions defined for positive
integers, then to write f(n) is O(g(n)).

• f(n) is big-O of g(n) means that there exists a
constant c such that |f(x)| ≤ c|g(n)| for all
sufficiently large positive integers n.

• Under these conditions we also say that “f(n) has
order at most g(n)” or “f(n) grows no more rapidly
than g(n)”.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Examples

• f(n) = 100n then f(n) = O(n).

• f(n) = 4n + 200 then f(n) = O(n).

• f(n) = n2 then f(n) = O(n2).

• f(n) = 3 n2 - 100 then f(n) = O(n2).

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Rules

• If T1(N) = O(f(N)) and T2(N) = O(g(N)), then

• T1(N) + T2(N) = max(O(f(N)), O(g(N))),

• T1(N) * T2(N) = O(f(N)) * g(N)),

• If T(N) is a polynomial of degree k, then T(N) = (Nk).

• logkN = O(N) for any constant k.

• This tells us that logarithms grow very slowly.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Watch Out!

• It is bad to include constants or low-order terms inside
a Big-Oh notation.

• Do not say T(N) = O(2N2) or T(N) = O(N2 + N).

• In both cases, T(N) = O(N2).

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Observations

• If f(n) is a polynomial in n with degree r, then f(n) is
O(nr), but f(n) is not O(ns) for any power s less
than r.

• Any logarithm of n grows more slowly (as n
increases) than any positive power of n.

• Hence log n is O(nk) for any k > 0, but nk is
never O(log n) for any power k > 0.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Common Orders

• O(1) means computing time that is bounded by a
constant (not dependent on n)

• O(n) means that the time is directly proportional to n,
and is called linear time.

• O(n2) means quadratic time.

• O(n3) means cubic time.

• O(2n) means exponential time.

• O(log n) means logarithmic time.

• O(log2 n) means log-squared time.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Algorithm Analyses

• On a list of length n, sequential search has running
time O(n).

• On a ordered list of length n, binary search has
running time O(log n).

• The sum of the sum of integer index of a loop from 1
to n is O(n2), i.e., 1 + 2 + 3 + … + n.

• For i = 1 to n

• For j = i to n

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Recurrence Relations

• Recurrence relations are useful in certain counting
problems.

• A recurrence relation relates the n-th element of a
sequence to its predecessors.

• Recurrence relations arise naturally in the analysis of
recursive algorithms.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Sequences and Recurrence Relations

• A (numerical) sequence is an ordered list of number.

• 2, 4, 6, 8, … (positive even numbers)

• 0, 1, 1, 2, 3, 5, 8, … (the Fibonacci numbers)

• 0, 1, 3, 6, 10, 15, … (numbers of key comparisons in selection
sort)

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Definitions

• A recurrence relation for the sequence a0, a1, ... is an
equation that relates an to certain of its predecessors
a0, a1, ... , an-1.

• Initial conditions for the sequence a0, a1, ... are explicitly
given values for a finite number of the terms of the
sequence.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• A person invests $1,000 at 12% compounded annually. If
An represents the amount at the end of n years, find a
recurrence relation and initial conditions that define the
sequence An.

• At the end of n-1 years, the amount is An-1. After one
more year, we will have the amount An-1 plus the interest.
Thus An = An-1 + (0.12) An-1 =(1.12) An-1, n ≥ 1.

• To apply this recurrence relation for n = 1, we need to
know the value of A0 which is 1,000.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Solving Recurrence Relations

• Iteration - we use the recurrence relation to write the
n-th term an in terms of certain of its predecessors an-1,
…, a0.

• We then successively use the recurrence relation to
replace each of an-1, …by certain of their predecessors.

• We continue until an explicit formula is obtained.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Some Definitions of Linear Second-order recurrences with
constant coefficients

• kth-order

• Elements x(n) and x(n-k) are k positions apart in the
unknown sequence.

• Linear

• It is a linear combination of the unknown terms of the
sequence.

• Constant coefficients

• The assumption that a, b, and c are some fixed numbers.

• Homogeneous

• If f(x) = 0 for every n.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Solving Recurrence Relations

• Linear homogeneous recurrence relations with constant
coefficients - a linear homogeneous recurrence relation of
order k with constant coefficients is a recurrence relation
of the form

a0 = c0, a1 = c1, ..., ak-1= ck-1,

• Notice that a linear homogeneous recurrence relation of
order K with constant coefficients, together with the k
initial conditions

an = c1 an-1 + c2 an-2 + ... + ck an-k, c, ≥ 0

• 	

 uniquely defines a sequence a0, a1, ...

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• Nonlinear

• an = 3 an-1 an-2.

• Inhomogeneous

• an - an-1 = 2n.

• Homogeneous recurrence relation with nonconstant
coefficients

• an = 3 n an-1.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Iteration Example

• We can solve the recurrence relation an = an-1 + 3
subject to the initial condition a1 = 2, by iteration.

• an-1 = an-2 + 3.

• an = an-1 + 3 = an-2 + 3 + 3 = an-2 + 2 x 3.

• an-2 = an-3 + 3.

• an = an-2 + 2 x 3 = an-3 + 3 + 2 x 3 = an-3 + 3 x 3.

• an = an-k + k x 3 = 2 + 3(n - 1).

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Iteration Example

• In general, to solve an = an-1 + k, a1 = c, one obtains an =
c + k(n-1).

• We can solve the recurrence relation

• an = k an-1, a0 = c.

• an = k an-1 = k(k an-2) = … = kn a0 = c kn.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Linear Homogeneous Recurrence Example

an = 5 an-1 - 6 an-2, a0 = 7, a1 = 16

• Since the solution was of the form an = tn, thus for our
first attempt at finding a solution of the second-order
recurrence relation, we will search for a solution of the
form an = tn.

• tn = 5 tn-1 - 6 tn-2

• t2 - 5t + 6 = 0

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• Solving the above we obtain, t = 2, t = 3.

• At this point, we have two solutions S and T given by

• Sn = 2n, Tn = 3n.

• We can verify that is S and T are solutions of the above,
then bS + dT, where b and d are any numbers whatever,
is also a solution of the above.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• In our case, if we define the sequence U by the equation

• Un = b Sn + d Tn

• = b 2n + d 3n

• To satisfy the initial conditions, we must have

• 7 = U0 = b 20 + d 30 = b + d.

• 16 = U1 = b 21 + d 31 = 2b + 3d.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• Solving these equations for b and d, we obtain

• b = 5, d = 2.

• Therefore, the sequence U defined by

• Un = 5 x 2n + 2 x 3n

satisfies the recurrence relation and the initial conditions.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Fibonacci Sequence

• The Fibonacci sequence is defined by the recurrence
relation

• fn = fn-1 + fn-2, n ≥ 3 and initial conditions

• f1 = 1, f2 = 2.

• We begin by using the quadratic formula to solve

• t2 - t - 1 = 0.

• The solutions are

t = 1± 5
2

.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example
• Thus the solution is of the form

• To satisfy the initial conditions, we must have

fn = b 1+ 5
2

!

"
$

%
&
n

+ d 1 − 5
2

!

"
$

%
&
n

.

b 1 + 5
2

!

"
$

%
& + d 1− 5

2
!

"
$

%
& =1,

b 1 + 5
2

!

"
$

%
&
2

+ d 1− 5
2

!

"
$

%
&
2

= 2.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Tower of Hanoi
• Find an explicit formula for an, the minimum number of

moves in which the n-disk Tower of Hanoi puzzle can be
solved.

• an = 2 an-1 + 1, a1 = 1.

• Applying the iterative method, we obtain

an = 2an−1 +1
= 2(2an− 2 +1) +1
= 22an− 2 + 2 +1
= 22 (2an− 3 +1) + 2 +1
= 23an −3 + 22 + 2 +1
M
= 2n−1a1 + 2n− 2 + 2n−3 + ... + 2 +1
= 2n−1 + 2n −2 + 2n− 3 + ... + 2 +1
= 2n −1

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Common Recurrence Types

• Decrease-by-one

• T(n) = T(n-1) + f(n)

• Decrease-by-a-constant-factor

• T(n) = T(n/b) + f(n)

• Divide-and-conquer

• T(n) = aT(n/b) + f(n)

