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Algorithm

• An algorithm is a clearly specified set of simple 
instructions to be followed to solve a problem.

• How to estimate the time required for a program.

• How to reduce the running time of a program from 
days or years to fractions of a second.

• What is the storage complexity of the program.

• How to deal with trade-offs.
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Running Time

• There are two contradictory goals:

• We would like an algorithm that is easy to understand, code, 
and debug.

• We would like an algorithm that makes efficient use of the 
computer's resources, especially, one that runs as fast as 
possible.
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Function Comparison

• Given two functions, f(N) and g(N), what does it mean 
when we say that 
	

 	

 	

 f(N) < g(N)?

• Should this hold for all N?

• We need to compare their relative rates of growth.
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Example

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html
http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html
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Why Use Bounds

• The idea is to establish a relative order among 
functions.

• We are more concerned about the relative rates 
of growth of functions.

• For example, which function is greater, 1,000N or 
N2?

• The turning point is N = 1,000 where N2 will be 
greater for larger N.
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First Definition

• It says that there is some point n0 past which       
c f(N) is always at least as large as T(N).

• In our case, T(N) = 1000N, f(N) = N2, n0 = 1,000, 
and c = 1.

• We could also use n0 = 10, and c = 100.

• So we can say that 1000N = O(N2).

• It is an upper bound on T(N).
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Other Definitions

• The second definition says that the growth rate of 
T(N) is greater than or equal to that of g(N).

• The third definition says that the growth rate of  
T(N) equals the growth rate of h(N).

• The fourth definition says that the growth rate of 
T(N) is less than the growth rate of p(N).
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Big-O Notation

• If f(n) and g(n) are functions defined for positive 
integers, then to write f(n) is O(g(n)).

• f(n) is big-O of g(n) means that there exists a 
constant c such that |f(x)| ≤ c|g(n)| for all 
sufficiently large positive integers n.

• Under these conditions we also say that “f(n) has 
order at most g(n)” or “f(n) grows no more rapidly 
than g(n)”.



CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Examples

• f(n) = 100n then f(n) = O(n).

• f(n) = 4n + 200 then f(n) = O(n).

• f(n) = n2 then f(n) = O(n2).

• f(n) = 3 n2 - 100 then f(n) = O(n2).
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Rules

• If T1(N) = O(f(N)) and T2(N) = O(g(N)), then

• T1(N) + T2(N) = max(O(f(N)), O(g(N))), 

• T1(N) * T2(N) = O(f(N)) * g(N)),

• If T(N) is a polynomial of degree k, then T(N) = (Nk).

• logkN = O(N) for any constant k.  

• This tells us that logarithms grow very slowly.
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Watch Out!

• It is bad to include constants or low-order terms inside 
a Big-Oh notation.

• Do not say T(N) = O(2N2) or T(N) = O(N2 + N).

• In both cases, T(N) = O(N2).
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Observations

• If f(n) is a polynomial in n with degree r, then f(n) is 
O(nr), but f(n) is not O(ns) for any power s less 
than r.

• Any logarithm of n grows more slowly (as n 
increases) than any positive power of n.

• Hence log n is O(nk) for any k > 0, but nk is 
never O(log n) for any power k > 0.
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Common Orders

• O(1) means computing time that is bounded by a 
constant (not dependent on n)

• O(n) means that the time is directly proportional to n, 
and is called linear time.

• O(n2) means quadratic time.

• O(n3) means cubic time.

• O(2n) means exponential time.

• O(log n) means logarithmic time.

• O(log2 n) means log-squared time.
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Algorithm Analyses

• On a list of length n, sequential search has running 
time O(n).

• On a ordered list of length n, binary search has 
running time O(log n).

• The sum of the sum of integer index of a loop from 1 
to n is O(n2), i.e., 1 + 2 + 3 + … + n.

• For i = 1 to n

• For j = i to n
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Recurrence Relations

• Recurrence relations are useful in certain counting 
problems.

• A recurrence relation relates the n-th element of a 
sequence to its predecessors.

• Recurrence relations arise naturally in the analysis of 
recursive algorithms.
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Sequences and Recurrence Relations

• A (numerical) sequence is an ordered list of number.

• 2, 4, 6, 8, … (positive even numbers)

• 0, 1, 1, 2, 3, 5, 8, … (the Fibonacci numbers)

• 0, 1, 3, 6, 10, 15, … (numbers of key comparisons in selection 
sort)
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Definitions

• A recurrence relation for the sequence a0, a1, ... is an 
equation that relates an to certain of its predecessors 
a0, a1, ... , an-1.

• Initial conditions for the sequence a0, a1, ... are explicitly 
given values for a finite number of the terms of the 
sequence.



CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Example

• A person invests $1,000 at 12% compounded annually.  If 
An represents the amount at the end of n years, find a 
recurrence relation and initial conditions that define the 
sequence An.

• At the end of n-1 years, the amount is An-1.  After one 
more year, we will have the amount An-1 plus the interest.  
Thus An = An-1 + (0.12) An-1 =(1.12) An-1, n ≥ 1.

• To apply this recurrence relation for n = 1, we need to 
know the value of A0 which is 1,000.
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Solving Recurrence Relations

• Iteration - we use the recurrence relation to write the 
n-th term an in terms of certain of its predecessors an-1, 
…, a0.  

• We then successively use the recurrence relation to 
replace each of an-1, …by certain of their predecessors.  

• We continue until an explicit formula is obtained.
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Some Definitions of Linear Second-order recurrences with 
constant coefficients

• kth-order

• Elements x(n) and x(n-k) are k positions apart in the 
unknown sequence.

• Linear

• It is a linear combination of the unknown terms of the 
sequence.

• Constant coefficients

• The assumption that a, b, and c are some fixed numbers.

• Homogeneous

• If f(x) = 0 for every n.
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Solving Recurrence Relations

• Linear homogeneous recurrence relations with constant 
coefficients - a linear homogeneous recurrence relation of 
order k with constant coefficients is a recurrence relation 
of the form

a0 = c0, a1 = c1, ..., ak-1= ck-1,

• Notice that a linear homogeneous recurrence relation of 
order K with constant coefficients, together with the k 
initial conditions

an = c1 an-1 + c2 an-2 + ... + ck an-k, c, ≥ 0

• 	

 uniquely defines a sequence a0, a1, ...
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Example

• Nonlinear

• an = 3 an-1 an-2.

• Inhomogeneous

• an - an-1 = 2n.

• Homogeneous recurrence relation with nonconstant 
coefficients

• an = 3 n an-1.
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Iteration Example

• We can solve the recurrence relation an = an-1 + 3 
subject to the initial condition a1 = 2, by iteration.

• an-1 = an-2 + 3.

• an = an-1 + 3 = an-2 + 3 + 3 = an-2 + 2 x 3.

• an-2 = an-3 + 3.

• an = an-2 + 2 x 3 = an-3 + 3 + 2 x 3 = an-3 + 3 x 3.

• an = an-k + k x 3 = 2 + 3(n - 1).
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Iteration Example

• In general, to solve an = an-1 + k, a1 = c, one obtains an = 
c + k(n-1).

• We can solve the recurrence relation

• an = k an-1, a0 = c.

• an = k an-1 = k(k an-2) = … = kn a0 = c kn.
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Linear Homogeneous Recurrence Example

an = 5 an-1 - 6 an-2, a0 = 7, a1 = 16

• Since the solution was of the form an = tn, thus for our 
first attempt at finding a solution of the second-order 
recurrence relation, we will search for a solution of the 
form an = tn.

• tn = 5 tn-1 - 6 tn-2

• t2 - 5t + 6 = 0
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Example

• Solving the above we obtain, t = 2, t = 3.

• At this point, we have two solutions S and T given by

• Sn = 2n, Tn = 3n.

• We can verify that is S and T are solutions of the above, 
then bS + dT, where b and d are any numbers whatever, 
is also a solution of the above.
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Example

• In our case, if we define the sequence U by the equation

• Un = b Sn + d Tn

• = b 2n + d 3n

• To satisfy the initial conditions, we must have

• 7 = U0 = b 20 + d 30 = b + d.

• 16 = U1 = b 21 + d 31 = 2b + 3d.
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Example

• Solving these equations for b and d, we obtain

• b = 5, d = 2.

• Therefore, the sequence U defined by 

• Un = 5 x 2n + 2 x 3n

satisfies the recurrence relation and the initial conditions.
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Fibonacci Sequence

• The Fibonacci sequence is defined by the recurrence 
relation

• fn = fn-1 + fn-2, n ≥ 3 and initial conditions

• f1 = 1,  f2 = 2.

• We begin by using the quadratic formula to solve

• t2 - t - 1 = 0.

• The solutions are 

t = 1± 5
2

.
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Example
• Thus the solution is of the form 

• To satisfy the initial conditions, we must have

fn = b 1+ 5
2
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Tower of Hanoi
• Find an explicit formula for an, the minimum number of 

moves in which the n-disk Tower of Hanoi puzzle can be 
solved.

• an = 2 an-1 + 1, a1 = 1.

• Applying the iterative method, we obtain

  

an = 2an−1 +1
= 2(2an− 2 +1) +1
= 22an− 2 + 2 +1
= 22 (2an− 3 +1) + 2 +1
= 23an −3 + 22 + 2 +1
M
= 2n−1a1 + 2n− 2 + 2n−3 + ... + 2 +1
= 2n−1 + 2n −2 + 2n− 3 + ... + 2 +1
= 2n −1



CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King,  All rights reserved.

Common Recurrence Types

• Decrease-by-one

• T(n) = T(n-1) + f(n)

• Decrease-by-a-constant-factor

• T(n) = T(n/b) + f(n)

• Divide-and-conquer

• T(n) = aT(n/b) + f(n)


