		00

Intensive Course in Physics Gravitational Waves

Tjonnie G. F. Li

Chapter 0: Introduction to Gravitational Waves

November 7, 2016

CURRICULUM VITAE

Assistant Professor PI Gravitational-Wave Group

Postdoc CBC searches; test of GR; nuclear EOS

PhD Test of GR; nuclear EOS; cosmology

MSci & BA Experimental & Theoretical Physics

DIRECT DETECTION OF GRAVITATIONAL WAVES

Intro 00●0			

DISCOVERIES

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 410^{+160}_{-14} Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, and the final black hole mass is $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole merger.

Tjonnie Li

Intro			
0000			

DISCOVERIES

GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 31 May 2016; published 15 June 2016)

We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of $3.4^{+0.7}_{-0.3} \times 10^{-22}$. The inferred source-frame initial black hole masses are $14.2^{+8.3}_{-3.7}M_{\odot}$ and $7.5^{+2.3}_{-2.3}M_{\odot}$, and the final black hole mass is $20.8^{+6.1}_{-1.7}M_{\odot}$. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440^{+180}_{-190} Mpc corresponding to a redshift of $0.09^{+0.03}_{-0.04}$. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

Intro 000●			

GW150914

Gravity •0000000000		

NEWTONIAN GRAVITY

Newton: Same force that causes an apple to fall from a tree and the Earth to orbit the Sun.

$\underset{\bullet 0000000000}{\text{Gravity}}$		

NEWTONIAN GRAVITY

- Newton: Same force that causes an apple to fall from a tree and the Earth to orbit the Sun.
- ► The *attractive* force is proportional to the mass of the two objects

$$F_g = G \frac{m_1 m_2}{r^2} \qquad (1)$$

Gravity ●0000000000		

NEWTONIAN GRAVITY

- Newton: Same force that causes an apple to fall from a tree and the Earth to orbit the Sun.
- ► The *attractive* force is proportional to the mass of the two objects

$$F_g = G \frac{m_1 m_2}{r^2} \qquad (1)$$

⇒ Accurately describes the motion of most celestial objects in our solar system.

Gravity 0000000000		

Newtonian Gravity – Problems

- Does not describe how the interaction occurs
 - How does the Earth know about the apple?
- Instantaneous interaction
 - ▶ Force felt is instantaneous
- Unexplained phenomena
 - Orbit of Mercury
 - Bending of light

$$F_1 = F_2 = G \frac{m_{1x} m_2}{r^2}$$

Gravity		
000000000		

SPECIAL THEORY OF RELATIVITY

▶ 1887: Michelson and Morley showed that the speed of light is always the same

Gravity 00●00000000		

SPECIAL THEORY OF RELATIVITY

- ▶ 1887: Michelson and Morley showed that the speed of light is always the same
- 1905: Assistant examiner at Swiss patent office formulates new law of motion: special relativity
 - The speed of light is the same for all observers
 - Nothing can go faster than the speed of light

Gravity		
000000000		

SPECIAL THEORY OF RELATIVITY

- ▶ 1887: Michelson and Morley showed that the speed of light is always the same
- 1905: Assistant examiner at Swiss patent office formulates new law of motion: special relativity
 - The speed of light is the same for all observers
 - Nothing can go faster than the speed of light
- $\Rightarrow Space and time are related and depend on the observer$

Gravity		
00000000000		

GENERAL THEORY OF RELATIVITY I

- Newton theory of gravity incompatible with special relativity
 - Gravity must be bound by the speed of light
 - Special relativity only describes constant motion, not acceleration

Gravity		
0000000000		

GENERAL THEORY OF RELATIVITY I

- Newton theory of gravity incompatible with special relativity
 - Gravity must be bound by the speed of light
 - Special relativity only describes constant motion, not acceleration
- Einstein's thought experiment
 - Cannot distinguish floating in space from free fall in a closed compartment
 - Gravity is just an acceleration

$\begin{array}{c} \text{Gravity} \\ \text{0000000000} \end{array}$		

GENERAL THEORY OF RELATIVITY I

- Newton theory of gravity incompatible with special relativity
 - Gravity must be bound by the speed of light
 - Special relativity only describes constant motion, not acceleration
- Einstein's thought experiment
 - Cannot distinguish floating in space from free fall in a closed compartment
 - Gravity is just an acceleration
- \Rightarrow The cause of this acceleration is *mass*

Gravity		
00000000000		

GENERAL THEORY OF RELATIVITY II

Spacetime tells matter how to move; matter tells spacetime how to curve.

John A. Wheeler

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

Gravity		
0000000000		

- Precession of the orbit of Mercury
 - Discovered by Le Verrier in 1859
 - First attributed to unknown planet
 - Predicted by General Relativity

Gravity		
0000000000		

- ✓ Precession of the orbit of Mercury
- Bending of light
 - Observing background stars during solar eclipse
 - Predicted by General Relativity

Gravity		
0000000000		

BENDING OF LIGHT

Gravity		
0000000000		

- ✓ Precession of the orbit of Mercury
- ✓ Bending of light
- Gravitational redshift
 - Wave changes frequency depending on preceding or recessing source
 - Gravity can also cause redshift/blueshift

Gravity		
00000000000		

REDSHIFT/BLUESHIFT

Tjonnie Li

Gravity		
00000000000		

- ✓ Precession of the orbit of Mercury
- ✓ Bending of light
- \checkmark Gravitational redshift
- Black holes
 - Calculate the curvature of spacetime around a mass
 - Existence of a horizon within where nothing can escape, not even light

Gravity		
00000000000		

- ✓ Precession of the orbit of Mercury
- ✓ Bending of light
- \checkmark Gravitational redshift
- \checkmark Black holes
- ▶ Expansion of the Universe
 - General Relativity predicts that the Universe is expanding
 - Must have started from a single point: Big Bang

Gravity		
00000000000		

- ✓ Precession of the orbit of Mercury
- ✓ Bending of light
- ✓ Gravitational redshift
- \checkmark Black holes
- \checkmark Expansion of the Universe
- Gravitational waves
 - Ripples in spacetime
 - Propagate at the speed of light
 - Last undiscovered prediction

Gravity		
0000000000		

GRAVITATIONAL WAVES

▶ Ripples in spacetime that travel at the speed of light

Gravity 0000000000		

GRAVITATIONAL WAVES

- ▶ Ripples in spacetime that travel at the speed of light
- ▶ Causes the contraction and expansion of space and time

	Detection		
	000000		

EFFECTS OF GRAVITATIONAL WAVES

1.3 billion lightyears away

Tjonnie Li

	Detection		
	000000		

MEASURING GRAVITATIONAL WAVES

- Measure gravitational waves by measuring *length changes*
- These changes are very small $\Delta L/L \approx 10^{-21}$
 - Similar to width of a hair over distance to the nearest star
- \Rightarrow Incredibly difficult to measure

	$\begin{array}{c} \text{Detection} \\ \text{000000} \end{array}$		

MEASUREMENT SCALE

Tjonnie Li

	$\begin{array}{c} \text{Detection} \\ \text{0000000} \end{array}$		

HOW CAN WE DETECT GRAVITATIONAL WAVES?

- ▶ Measure strain through *laser interferometry*
- ▶ Gravitational waves changes the length of the arms
- Measure the change in light intensity

	Detection		
	0000000		

INTERFEROMETERS

Tjonnie Li

	$\begin{array}{c} \text{Detection} \\ \text{00000} \bullet 0 \end{array}$		

LASER INTERFEROMETER GRAVITATIONAL-WAVE OBSERVATORY

LASER INTERFEROMETER GRAVITATIONAL-WAVE OBSERVATORY

ZLIGO LSC **LIGO Scientific Collaboration** CALIFORNIA STATE UNIVERSITY Andrews 🔕 University WASHINGTON STATE indig University MONTCLAIR STATE Australian of Glasgov UNIVERSITY Jational University WHITMAN COLLEGE AMERICAN UNIVERSITY FEXAS TECH R·I· UNIVERSITY Università degli Studi del Sannio ICTF UTRG CITA ICAT UNIVERSITY OF SAIFR Max Planck Institute CAMBRIDGE for Gravitational Physics SOUTHERN 中文大學 MONASH University COLUMBIA UNIVERSITY MISSISSIPPI The Chinese University of Hong Kong THE UNIVERSITY OF UNIVERSITY THE UNIVERSITY OF CHICAG ΔΠΕΙ ΔΙΠΕ MELBOURNE altech BIRMINGHAM WASHINGTON Universitat de les Illes Balears UNIVERSITY of WISCONSIN **UMMILWAUKEE** Northwestern CAEDDY MONASH UNIVERSITY of GeorgiaInstitu University Travitational Wave Troup of **Technology** UniversitySTATE UNIVERSITY of Southampton CHARLES ST PennState Leihniz Science & Technology Facilities Council Universität Rutherford Appleton Laboratory Hannover

	$\begin{array}{c} \text{Detection} \\ \text{000000} \bullet \end{array}$		

ADVANCED LIGO

▶ Advanced LIGO began operations in September 2015

	$\underset{\bullet \circ \circ}{\operatorname{Astronomy}}$	

TELESCOPES

▶ 1609: Galileo used a *telescope* to view the stars

	Astronomy	
	000	

Amazing discoveries

▶ Since then, we have made amazing discoveries

	Astronomy	
	000	

THE DARK UNIVERSE

 \blacktriangleright Many astronomical phenomena are dark

ntro Gravity Detection Astronomy **Sources of GWs** GW Era 0000 0000000000 0000000 000 **000000000** 00

A NEW WINDOW ON THE UNIVERSE

		Sources of GWs 000000000	

ASTROPHYSICAL SOURCES OF GRAVITATIONAL WAVES

Binary mergers

Continuous waves

Burst

Stochastic background

		Sources of GWs 000000000	

BINARY MERGERS

- Radiate GWs as components orbit each other
- Loss of energy/momentum causes separation to shrink
- Ultimately merge and form single black hole

Tjonnie Li

		Sources of GWs 000000000	

GW150914

29 solar mass black hole + 36 solar mass black hole

Tjonnie Li

		Sources of GWs 000000000	

CONTINUOUS WAVES

- ► Assymetric neutron stars
- Weak emitters
- Monotonic waveforms
- Long duration

		Sources of GWs	
		000000000	

Tjonnie Li

		Sources of GWs 0000000000	

BURST

- ► Supernovae
- Cosmic strings
- Weak emitters
- Poorly modelled
- ▶ Short duration, transient

Tjonnie Li

32

Tjonnie Li

		Sources of GWs 00000000●0	

STOCHASTIC

- ▶ Big Bang
- Unresolved binaries
- Weak emitters
- ▶ Well-modelled (statistically)
- Long duration

Tjonnie Li

		Sources of GWs	
		000000000	

Tjonnie Li

		GW Era ●0

WHAT CAN WE LEARN FROM GRAVITATIONAL WAVES?

Fundamental physics

- Testing general relativity
- Properties of black holes
- Extra dimensions (string theory)
- Stellar/galactic evolution
 - ▶ End of stellar evolution
 - Galactic evolution
- Relativistic astrophysics
- Cosmology
 - Content of the Universe
 - Nature of dark energy/matter

		GW Era

CONCLUDING REMARKS

- LIGO is providing us with a new way to see the Universe
- Gravitational waves will teach us about astrophysical phenomena
- Discover things scientists have yet to envisage

The beginning of a new era in astronomy

BLACK HOLE HUNTER – EASY

Tjonnie Li

BLACK HOLE HUNTER – EASY

BLACK HOLE HUNTER – INTERMEDIATE

Tjonnie Li

BLACK HOLE HUNTER – INTERMEDIATE

BLACK HOLE HUNTER – ADVANCED

Tjonnie Li

BLACK HOLE HUNTER – ADVANCED

