

Intensive Course in Physics Gravitational Waves

Tjonnie G. F. Li

Chapter 0: Introduction to Gravitational Waves

November 7, 2016

Curriculum Vitae

Assistant Professor PI Gravitational-Wave Group

Postdoc CBC searches; test of GR; nuclear EOS

PhD Test of GR; nuclear EOS; cosmology

MSci & BA Experimental & Theoretical Physics

DIRECT DETECTION OF GRAVITATIONAL WAVES

DISCOVERIES

Observation of Gravitational Waves from a Binary Black Hole Merger

B.P. Abbott et al.^{*}

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 410⁺¹⁶⁰ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, and the final black hole mass is $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

Discoveries

GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary **Black Hole Coalescence**

 $B. P.$ Abbott *et al*.^{*}

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 31 May 2016; published 15 June 2016)

We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of $3.4^{+0.7}_{-0.9}\times10^{-22}$. The inferred source-frame initial black hole masses are $14.2^{+8.3}_{-3.7}M_{\odot}$ and $7.5^{+2.3}_{-2.3}M_{\odot}$, and the final black hole mass is $20.8^{+6.1}_{-17}M_{\odot}$. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440^{+180}_{-190} Mpc corresponding to a redshift of $0.09_{-0.04}^{+0.03}$. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

GW150914

Newtonian Gravity

▶ Newton: Same force that causes an apple to fall from a tree and the Earth to orbit the Sun.

Newtonian Gravity

- \triangleright Newton: Same force that causes an apple to fall from a tree and the Earth to orbit the Sun.
- \blacktriangleright The *attractive* force is proportional to the mass of the two objects

$$
F_g = G \frac{m_1 m_2}{r^2} \qquad (1)
$$

Newtonian Gravity

- \triangleright Newton: Same force that causes an apple to fall from a tree and the Earth to orbit the Sun.
- \blacktriangleright The *attractive* force is proportional to the mass of the two objects

$$
F_g = G \frac{m_1 m_2}{r^2} \qquad (1)
$$

 \Rightarrow Accurately describes the motion of most celestial objects in our solar system.

Newtonian Gravity – Problems

- \triangleright Does not describe *how* the interaction occurs
	- \blacktriangleright How does the Earth know about the apple?
- \blacktriangleright Instantaneous interaction
	- \triangleright Force felt is instantaneous
- \triangleright Unexplained phenomena
	- \triangleright Orbit of Mercury
	- \triangleright Bending of light

$$
F_1 = F_2 = G \frac{m_1 \times m_2}{r^2}
$$

SPECIAL THEORY OF RELATIVITY

► 1887: Michelson and Morley showed that the speed of light is always the same

SPECIAL THEORY OF RELATIVITY

- ► 1887: Michelson and Morley showed that the speed of light is always the same
- ^I 1905: Assistant examiner at Swiss patent office formulates new law of motion: special relativity
	- \blacktriangleright The speed of light is the same for all observers
	- \triangleright Nothing can go faster than the speed of light

SPECIAL THEORY OF RELATIVITY

- ► 1887: Michelson and Morley showed that the speed of light is always the same
- \triangleright 1905: Assistant examiner at Swiss patent office formulates new law of motion: special relativity
	- \blacktriangleright The speed of light is the same for all observers
	- \triangleright Nothing can go faster than the speed of light
- ⇒ Space and time are related and depend on the observer

General theory of relativity I

- ► Newton theory of gravity incompatible with special relativity
	- \triangleright Gravity must be bound by the speed of light
	- \triangleright Special relativity only describes constant motion, not acceleration

GENERAL THEORY OF RELATIVITY I

- \triangleright Newton theory of gravity incompatible with special relativity
	- \triangleright Gravity must be bound by the speed of light
	- \triangleright Special relativity only describes constant motion, not acceleration
- Einstein's thought experiment
	- \triangleright Cannot distinguish floating in space from free fall in a closed compartment
	- \triangleright Gravity is just an acceleration

GENERAL THEORY OF RELATIVITY I

- \triangleright Newton theory of gravity incompatible with special relativity
	- \triangleright Gravity must be bound by the speed of light
	- \triangleright Special relativity only describes constant motion, not acceleration
- Einstein's thought experiment
	- \triangleright Cannot distinguish floating in space from free fall in a closed compartment
	- \triangleright Gravity is just an acceleration
- The cause of this acceleration is mass

GENERAL THEORY OF RELATIVITY II

Spacetime tells matter how to move; matter tells spacetime how to curve.

John A. Wheeler

$$
G_{\mu\nu}=8\pi T_{\mu\nu}
$$

- \blacktriangleright Precession of the orbit of Mercury
	- ► Discovered by Le Verrier in 1859
	- \blacktriangleright First attributed to unknown planet
	- ▶ Predicted by General Relativity

- Precession of the orbit of Mercury
- \triangleright Bending of light
	- \triangleright Observing background stars during solar eclipse
	- ▶ Predicted by General Relativity

Bending of light

- Precession of the orbit of Mercury
- $\sqrt{\ }$ Bending of light
- \triangleright Gravitational redshift
	- \triangleright Wave changes frequency depending on preceding or recessing source
	- \triangleright Gravity can also cause redshift/blueshift

Redshift/blueshift

- Precession of the orbit of Mercury
- $\sqrt{\ }$ Bending of light
- Gravitational redshift
- ^I Black holes
	- \triangleright Calculate the curvature of spacetime around a mass
	- \blacktriangleright Existence of a horizon within where nothing can escape, not even light

- X Precession of the orbit of Mercury
- $\sqrt{\ }$ Bending of light
- Gravitational redshift
- Black holes
- ► Expansion of the Universe
	- ► General Relativity predicts that the Universe is expanding
	- \blacktriangleright Must have started from a single point: Big Bang

- Precession of the orbit of Mercury
- $\sqrt{\ }$ Bending of light
- Gravitational redshift
- **Black holes**
- Expansion of the Universe
- ^I Gravitational waves
	- \triangleright Ripples in spacetime
	- Propagate at the speed of light
	- ► Last undiscovered prediction

GRAVITATIONAL WAVES

 \triangleright Ripples in spacetime that travel at the speed of light

GRAVITATIONAL WAVES

- ► Ripples in spacetime that travel at the speed of light
- \triangleright Causes the contraction and expansion of space and time

Effects of Gravitational Waves

1.3 billion lightyears away

Measuring gravitational waves

- \triangleright Measure gravitational waves by measuring length changes
- These changes are very small $\Delta L/L \approx 10^{-21}$
	- \triangleright Similar to width of a hair over distance to the nearest star
- \Rightarrow Incredibly difficult to measure

Measurement scale

HOW CAN WE DETECT GRAVITATIONAL WAVES?

- \blacktriangleright Measure strain through *laser interferometry*
- \triangleright Gravitational waves changes the length of the arms
- Measure the change in light intensity

INTERFEROMETERS

Laser Interferometer Gravitational-Wave **OBSERVATORY**

Laser Interferometer Gravitational-Wave **OBSERVATORY**

|| LIGO LSC LIGO Scientific Collaboration

Advanced LIGO

 \triangleright Advanced LIGO began operations in September 2015

TELESCOPES

 \triangleright 1609: Galileo used a *telescope* to view the stars

Amazing discoveries

 \triangleright Since then, we have made amazing discoveries

THE DARK UNIVERSE

 \blacktriangleright Many astronomical phenomena are *dark*

A new window on the Universe

Astrophysical sources of gravitational waves

Binary mergers

Continuous waves

Burst

Stochastic background

Binary mergers

- ▶ Radiate GWs as components orbit each other
- \blacktriangleright Loss of energy/momentum causes separation to shrink
- \blacktriangleright Ultimately merge and form single black hole

GW150914

 29 solar mass black hole $+36$ solar mass black hole

CONTINUOUS WAVES

- **In Assymetric neutron stars**
- \blacktriangleright Weak emitters
- \blacktriangleright Monotonic waveforms
- \blacktriangleright Long duration

BURST

- \blacktriangleright Supernovae
- \triangleright Cosmic strings
- ^I Weak emitters
- ▶ Poorly modelled
- \triangleright Short duration, transient

STOCHASTIC

- \blacktriangleright Big Bang
- ^I Unresolved binaries
- Weak emitters
- ^I Well-modelled (statistically)
- Long duration

WHAT CAN WE LEARN FROM GRAVITATIONAL WAVES?

\blacktriangleright Fundamental physics

- \triangleright Testing general relativity
- ^I Properties of black holes
- Extra dimensions (string) theory)
- \triangleright Stellar/galactic evolution
	- \blacktriangleright End of stellar evolution
	- \triangleright Galactic evolution
- \triangleright Relativistic astrophysics
- **Cosmology**
	- \triangleright Content of the Universe
	- \triangleright Nature of dark energy/matter

Concluding remarks

- I LIGO is providing us with a new way to see the Universe
- \triangleright Gravitational waves will teach us about astrophysical phenomena
- \triangleright Discover things scientists have yet to envisage

The beginning of a new era in astronomy

Black hole hunter – Easy

Black hole hunter – Easy

Black hole hunter – Intermediate

Black hole hunter – Intermediate

Tjonnie Li Intensive course in Physics: Gravitational Waves 39

 25

 25

Black hole hunter – Advanced

Black hole hunter – Advanced

