

Intensive Course in Physics Gravitational Waves

Tjonnie G. F. Li

Chapter 2: Properties of Gravitational Waves

November 8, 2016

Instanteneous Forces

- \triangleright In Newton's theory of gravity, any changes in the distribution of matter are felt instantaneously at arbitrarily large distances.
- \triangleright Governed by the Poisson equation

$$
\nabla^2 \Phi = 4\pi G \rho \tag{1}
$$

- Considered unsatisfactory already by some of his contemporaries in the late 17th century.
- \triangleright Prominent scientists (e.g. Laplace) tried to come up with some dynamical mechanism
- \triangleright Even bigger problem when special relativity (1905) was introduced
	- In Strict speed limit on communication of any kind

ELECTROMAGNETISM

- In Maxwell's theory of electromagnetism does not have instantaneous action at a distance.
- \triangleright **E** and **B** at a distance r from the source depend on what the source was doing at a time $t - r/c$.
- In The time lag, r/c , is the time needed for a signal to cross the distance r if it traveled at the speed of light: electromagnetism obeys Einstein's speed limit.
- \triangleright **E** and **B** obey a wave equation

$$
\left(c^2 \nabla^2 - \partial_t^2\right) \mathbf{E} = 0\tag{2}
$$

$$
\left(c^2 \nabla^2 - \partial_t^2\right) \mathbf{B} = 0\tag{3}
$$

 \triangleright Changes in a charge/current distribution are communicated to the rest of space by electromagnetic waves.

Electromagnetic field does not just "track" its sources; it has dynamics of its own.

GENERAL RELATIVITY

- In After special relativity was developed it was soon speculated that the gravitational field might also be dynamical.
- \triangleright Changes in the gravitational field should propagate in a wave-like fashion, no faster than the speed of light
- ^I Eliminating instantaneous action at a distance.
- ► General theory of relativity of 1916 indeed incorporated all these ideas.

General Relativity predicts the existence of gravitational waves

WEAK FIELDS

- In Study GWs in the regime where gravitational fields are weak.
- In Write spacetime metric $g_{\mu\nu}$ as the Minkowski spacetime $\eta_{\mu\nu}$ plus a small correction $h_{\mu\nu}$:

$$
g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \qquad |h_{\mu\nu}| \ll 1. \tag{4}
$$

In Write the Einstein equations to first order in $h_{\mu\nu}$,

COORDINATE TRANSFORMS I

Einstein Field equations are invariant under general coordinate transformations,

$$
x^{\mu} \longrightarrow x^{\prime \mu}(x), \tag{5}
$$

 \triangleright Metric transforms as

$$
g_{\mu\nu}(x) \longrightarrow g'_{\mu\nu} = \frac{\partial x^{\rho}}{\partial x'^{\mu}} \frac{\partial x^{\sigma}}{\partial x'_{\nu}} g_{\rho\sigma}(x). \tag{6}
$$

- \triangleright This invariance is broken when we choose a fixed background $\eta_{\mu\nu}$ as in Eq. (4)
- Instead, we look for a specific reference frame where Eq. (4) holds in a sufficiently large region of spacetime.
- \triangleright No longer be able to transform the metric at will.

Coordinate transforms II

- \triangleright Still exists a (much more limited) family of transformations which respects our choice of frame
- \triangleright Consider the following gauge transformations

$$
x^{\mu} \longrightarrow x^{\prime \mu} = x^{\mu} + \xi^{\mu}(x),\tag{7}
$$

► where $|\partial_{\rho} \xi_{\mu}|$ are at most of the same order as $|h_{\mu\nu}|$

In Substituting into the transformation law of the metric, Eq. (6) and keeping only lowest-order terms

$$
h_{\mu\nu}(x) \longrightarrow h'_{\mu\nu}(x') = h_{\mu\nu}(x) - (\partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}).
$$
 (8)

Coordinate transforms III

 \triangleright We can also perform global (*x*-independent) Lorentz transformations,

$$
x^{\mu} \longrightarrow x^{\prime \mu} = \Lambda^m_{\ \nu} x^{\nu}.
$$
 (9)

 \blacktriangleright h_{uv} transforms as

$$
h'_{\mu\nu}(x') = \Lambda_{\mu}{}^{\rho} \Lambda_{\nu}{}^{\sigma} h_{\rho\sigma}(x). \tag{10}
$$

 $\blacktriangleright h_{\mu\nu}$ is a tensor under Lorentz transformations, as long as one keeps $|h_{\mu\nu}| \ll 1$

Linearised Einstein's Field Equations I

 \triangleright To leading order in $h_{\mu\nu}$, the Riemann tensor is

$$
R_{\mu\nu\rho\sigma} = \frac{1}{2} \left(\partial_{\nu} \partial_{\rho} h_{\mu\sigma} + \partial_{\mu} \partial_{\sigma} h_{\nu\rho} - \partial_{\mu} \partial_{\rho} h_{\nu\sigma} - \partial_{\nu} \partial_{\sigma} h_{\mu\rho} \right). \tag{11}
$$

 \triangleright Linearized Riemann tensor is invariant under the gauge transformations Eq. (8)

[Linearised Gravity](#page-4-0) [Effects of GWs](#page-30-0) [Energy & Momentum](#page-42-0) [Generation of GWs](#page-59-0)

Linearised Einstein's Field Equations II

 \blacktriangleright It will be convenient to introduce

$$
\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} h,
$$
\n(12)

 \blacktriangleright where $h = \eta^{\mu\nu} h_{\mu\nu}$

Note that $\bar{h} \equiv \eta^{\mu\nu} h_{\mu\nu} = h - 2h = -h$ so that

$$
h_{\mu\nu} = \bar{h}_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} \bar{h}.
$$
 (13)

Linearised Einstein's Field Equations III

In Using Eq. (11) , and Eq. (13) , the linearized Einstein equations take the form

$$
\Box \bar{h}_{\mu\nu} + \eta_{\mu\nu} \partial^{\rho} \partial^{\sigma} \bar{h}_{\rho\sigma} - \partial^{\rho} \partial_{\nu} \bar{h}_{\mu\rho} - \partial^{\rho} \partial_{\mu} \bar{h}_{\nu\rho} = -\frac{16\pi G}{c^4} T_{\mu\nu}, \quad (14)
$$

► where $\Box \equiv \partial_{\mu} \partial^{\mu}$ is the usual d'Alembertian.

Linearised Einstein's Field Equations IV

- \triangleright Use residual gauge freedom Eq. (7) to further simplify
- \blacktriangleright $\bar{h}_{\mu\nu}$ transforms as

$$
\bar{h}_{\mu\nu} \longrightarrow \bar{h}'_{\mu\nu} = \bar{h}_{\mu\nu} - (\partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu} - \eta_{\mu\nu}\partial_{\rho}\xi^{\rho}). \tag{15}
$$

 \blacktriangleright Impose the harmonic gauge

$$
\partial^{\nu}\bar{h}_{\mu\nu} = 0. \tag{16}
$$

In Last three terms in the LHS of Eq. (14) vanish

$$
\Box \bar{h}_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu}.\tag{17}
$$

These are the linearized Einstein equations.

Linearised Einstein's Field Equations V

 \triangleright Note that our ability to impose the harmonic gauge Eq. (16) Eq. (17) implies that

$$
\partial^{\nu}T_{\mu\nu} = 0. \tag{18}
$$

In the full theory one has $\nabla^{\nu}T_{\mu\nu}$ with ∇^{ν} the covariant derivative

VACUUM SOLUTIONS I

 \triangleright The general solution to the linearized Einstein equations at (t, \mathbf{x}) is

$$
\bar{h}_{\mu\nu}(t,\mathbf{x}) = -4\frac{G}{c^2} \int_{\mathcal{V}} \frac{T_{\mu\nu}(t - |\mathbf{x} - \mathbf{x}'|/c, \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 \mathbf{x}'.\qquad(19)
$$

- ► Unlike the Newtonian potential, the value of $\bar{h}_{\mu\nu}$ at a point **x** arbitrarily far from the source $\mathcal S$ does not have instantaneous knowledge of what happens at at $\mathcal V$.
- **IF** There are time lags $|\mathbf{x} \mathbf{x}'|/c$, these being the times needed for a signal traveling at the speed of light to get from points x' inside the source to the point x. Just like electromagnetism

gravity does not have instantaneous action at at distance after all.

Vacuum Solutions II

 \triangleright Outside the source $T_{\mu\nu} = 0$, and Eq. (17) reduces to

$$
\Box \bar{h}_{\mu\nu} = 0, \tag{20}
$$

 \triangleright or written in full

$$
\left(-\frac{1}{c^2}\frac{\partial}{\partial t^2} + \nabla^2\right)\bar{h}_{\mu\nu} = 0.
$$
\n(21)

This is just a wave equation, for waves traveling at the speed of light

Vacuum Solutions III

 \triangleright Solutions can be written as superpositions of plane waves with frequencies ω and wave vectors **k**,

$$
A_{\mu\nu}\cos(\omega t - \mathbf{k} \cdot \mathbf{x}),\tag{22}
$$

 \triangleright where $\omega = c|\mathbf{k}|$, and $A_{\mu\nu}$ has constant components.

Newtonian Limit I

 \triangleright For weak gravitational fields and small velocities,

$$
|T^{00}| \gg |T^{i0}| \gg |T^{ii}| \tag{23}
$$

 \triangleright which translates into

$$
|\bar{h}^{00}| \gg |\bar{h}^{i0}| \gg |\bar{h}^{ii}| \tag{24}
$$

 \blacktriangleright In this regime,

$$
T^{00}/c^2 \simeq \rho \tag{25}
$$

 \blacktriangleright The equation Eq. (17) then reduces to

$$
\Box \bar{h}^{00} \simeq -\frac{16\pi G}{c^2} \rho. \tag{26}
$$

NEWTONIAN LIMIT II

- In For sources moving with 3-velocity v such that $v/c \ll 1$, $(1/c^2)\partial^2 \bar{h}^{00}/\partial t^2$ is of order $(v/c)^2 \partial^2 \bar{h}^{00}/\partial (x^i)^2$,
- \blacktriangleright Eq. (21) reduces to

$$
c^2 \nabla^2 \bar{h}^{00} \simeq -16\pi G \rho. \tag{27}
$$

 \triangleright With the identification

$$
c^2 \bar{h}^{00} = -4\phi,\tag{28}
$$

this becomes

$$
\nabla^2 \phi = 4\pi G \rho,\tag{29}
$$

Poisson equation for the gravitational potential ϕ in Newton's theory of gravity.

NEWTONIAN LIMIT III

- \triangleright The identification Eq. (28) is consistent with the motion of point particles in the weak-field, low-velocity regime.
- In general relativity this motion is governed by the geodesic equation,

$$
\frac{d^2x^i}{d\tau^2} + \Gamma^i_{\mu\nu}\frac{dx^\mu}{d\tau}\frac{dx^\nu}{d\tau} = 0.
$$
 (30)

- Recall that $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ with $|h_{\mu\nu}| \ll 1$.
- For $v/c \ll 1$, the proper time τ will approximately coincide with the coordinate time t associated with the background spacetime $\eta_{\mu\nu}$.
- \blacktriangleright Moreover, $dx^0/dt \simeq c$ while $dx^i/dt = \mathcal{O}(v)$.

NEWTONIAN LIMIT IV

In Hence, to leading order we need only retain the term in Eq. (30) with $\mu = \nu = 0$

$$
\frac{d^2x^i}{dt^2} \simeq -c^2\Gamma^i_{00}
$$

=
$$
c^2 \left(\frac{1}{2}\partial^i h_{00} - \partial_0 h_0^i\right).
$$
 (31)

 \triangleright For a non-relativistic source, the time derivative is again of higher order than the spatial derivatives

$$
\frac{d^2x^i}{dt^2} = \frac{c^2}{2}\partial^i h_{00}.\tag{32}
$$

In This is an equation in terms of h_{00} rather than \bar{h}_{00} .

Newtonian Limit V

Since \bar{h}^{00} dominates all other components of $\bar{h}^{\mu\nu}$,

$$
h = h^{\mu}{}_{\mu} = -\bar{h}^{\mu}{}_{\mu} = \bar{h}^{00},\tag{33}
$$

From Eq. (13) and Eq. (28) we get

$$
c^2 h_{00} = -2\phi.
$$
 (34)

 \triangleright Substituting this into Eq. (32) we retrieve Newton's second law for a force with potential ϕ :

$$
\mathbf{a} = -\nabla \phi,\tag{35}
$$

 \triangleright with a being the acceleration 3-vector.

Retrieved both Newton's equation for the gravitational potential Eq. (29), and the Newtonian motion of a particle in such a potential Eq. (35).

Newtonian Limit VI

In The most general solution of Eq. (29) is

$$
\phi(t, \mathbf{x}) = G \int_{\mathcal{V}} \frac{\rho(t, \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 \mathbf{x}'. \tag{36}
$$

- The fact that $\rho(t, \mathbf{x}')$ in the integrand does not include a time $\log |\mathbf{x} - \mathbf{x}'|/c$ is due to the absence of a double time derivative in Eq. (29)
- In Eq. (27) this term could be neglected because $v/c \ll 1$.

DEGREES OF FREEDOM I

- A priori, $\bar{h}_{\mu\nu}$ has 10 independent components
- \triangleright Some are gauge artefact and can be eliminated by using transformations of the form Eq. (15).
- \blacktriangleright Harmonic gauge Eq. (16) eliminates 4 components
- This gauge choice still allows for residual freedom.

DEGREES OF FREEDOM II

 \triangleright Condition Eq. (16) is not spoiled by a transformation Eq. (15)

$$
\Box \xi_{\mu} = 0. \tag{37}
$$

 \triangleright Note that if $\Box \xi_{\mu} = 0$ then also $\Box \xi_{\mu\nu} = 0$, where

$$
\xi_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu} - \eta_{\mu\nu}\partial_{\rho}\xi^{\rho},\tag{38}
$$

 \triangleright because \Box commutes with ∂_{μ} .

We can use 4 functions $\xi_u(x)$ to eliminate 4 more components of $\bar{h}_{\mu\nu}$ without spoiling either the harmonic gauge or the simple form of the linearized Einstein equations [\(17\)](#page-11-0).

TT-Gauge I

 \triangleright We can choose $\xi_0(x)$ such that the trace

$$
\bar{h} = 0 \tag{39}
$$

 \blacktriangleright such that

$$
\bar{h}_{\mu\nu} = h_{\mu\nu} \tag{40}
$$

Furthermore, we can choose the three functions $\xi_i(x)$, $i = 1, 2, 3$ so that

$$
h_{0\mu}(x) = 0.\tag{41}
$$

From Eq. (40) the harmonic gauge condition with $\mu = 0$ then becomes

$$
\partial^0 h_{00} + \partial^i h_{0i} = 0. \tag{42}
$$

T T-Gauge II

Ince we just set $h_{0i} = 0$, this reduces to

$$
\partial^0 h_{00} = 0,\tag{43}
$$

- so that h_{00} does not depend on time.
- \triangleright A time-independent contribution to h_{00} corresponds to the static part of the gravitational interaction, i.e., to the Newtonian potential of the source arising from its total mass without contributions due to motion.
- \triangleright The gravitational wave is the time-dependent part, and since this is our focus here we will just set $h_{00} = 0$.
- \triangleright Strictly speaking we should retain the Newtonian contribution h_{00} , but it will have no effect on gravitational wave detection

TT-Gauge III

In The spatial part of the harmonic gauge (with $\mu = i = 1, 2, 3$) is then

$$
\partial^j h_{ij} = 0,\t\t(44)
$$

 \triangleright and the condition $h = 0$ becomes

$$
h^i{}_i = 0 \tag{45}
$$

 \blacktriangleright In summary, we have

$$
h_{0\mu} = 0 \tag{46}
$$

$$
h^i{}_i = 0 \tag{47}
$$

$$
\partial^j h_{ij} = 0. \tag{48}
$$

TT-Gauge IV

- In Used up all of our gauge freedom and are left with two degrees of freedom.
- \triangleright The gauge in which the conditions Eq. (48) hold is called the transverse-traceless gauge, or TT gauge.
- In The metric perturbation in the TT gauge is denoted h_{ij}^{TT} .

TT-Gauge V

 \triangleright Eq. (21) has plane wave solutions of the form

$$
h_{ij}^{\text{TT}} = e_{ij}(\mathbf{k}) \cos(k_{\mu}x^{\mu}), \tag{49}
$$

▶ with
$$
k_{\mu} = (\omega/c, \mathbf{k})
$$
, and $\omega = c|\mathbf{k}|$.

The tensor $e_{ij}(\mathbf{k})$ is called the polarization tensor.

 \triangleright For a single plane wave with wave vector **k**, the condition $\partial^j h_{ij} = 0$ becomes

$$
\mathbf{k}^j h_{ij}^{\mathrm{TT}} = 0 \qquad n^j h_{ij}^{\mathrm{TT}} = 0 \tag{50}
$$

ightharpoonta in the direction of motion.

Non-zero components of h_{ij}^T are in the plane that is transverse to $\hat{\mathbf{n}}$.

TT-Gauge VI

- In Suppose we choose the z axis to lie in the direction of $\hat{\mathbf{n}}$.
- \triangleright Taking into account symmetry, transversality and tracelessness of h_{ij}^{TT} , we get

$$
h_{ij}^{\rm TT} = \begin{pmatrix} h_+ & h_{\times} & 0 \\ h_{\times} & -h_+ & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij} \cos \left[\omega (t - z/c) \right]
$$
 (51)

In terms of the line element ds^2 , we have

$$
ds^{2} = -c^{2}dt^{2} + dz^{2} + [1 + h_{+} \cos[\omega(t - z/c)]] dx^{2}
$$

+
$$
[1 - h_{+} \cos[\omega(t - z/c)]] dy^{2} + 2h_{\times} \cos[\omega(t - z/c)] dx dy.
$$
(52)

Geodesic Deviation I

What is the effect of the perturbation h on matter?

- \triangleright Consider the relative motion of two nearby test particles in free fall.
- \triangleright A free-falling test particle obeys the geodesic equation,

$$
\frac{d^2x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\rho}(x)\frac{dx^{\nu}}{d\tau}\frac{dx^{\rho}}{d\tau} = 0.
$$
 (53)

 \triangleright where τ is proper time.

GEODESIC DEVIATION II

- Now consider two nearby free-falling particles, at $x^{\mu}(\tau)$ and $x^{\mu}(\tau)+\zeta^{\mu}.$
- \triangleright The first particle is subject to Eq. [\(53\)](#page-30-1) while the second one obeys

$$
\frac{d^2(x^{\mu} + \zeta^{\mu})}{d\tau^2} + \Gamma^{\mu}_{\nu\rho}(x + \zeta) \frac{d(x^{\nu} + \zeta^{\nu})}{d\tau} \frac{d(x^{\rho} + \zeta^{\rho})}{d\tau} = 0.
$$
 (54)

- \blacktriangleright Taking the difference between Eq. (54) and Eq. (53)
- Expanding to first order in ζ^{μ}

$$
\frac{d^2\zeta^{\mu}}{d\tau^2} + 2\Gamma^{\mu}_{\nu\rho}\frac{dx^{\nu}}{d\tau}\frac{d\zeta^{\rho}}{d\tau} + \zeta^{\sigma}\partial_{\sigma}\Gamma^{\mu}_{\nu\rho}(x)\frac{dx^{\nu}}{d\tau}\frac{dx^{\rho}}{d\tau} = 0.
$$
 (55)

GEODESIC DEVIATION III

Introduce the covariant derivative of a vector field V^{μ} along the curve $x^{\mu}(\tau)$:

$$
\frac{DV^{\mu}}{D\tau} = \frac{dV^{\mu}}{d\tau} + \Gamma^{\mu}_{\nu\rho}V^{\nu}\frac{dx^{\rho}}{d\tau}.
$$
 (56)

 \triangleright Using this and the definition of the Riemann tensor, recast Eq. (55) as

$$
\frac{D^2\zeta^{\mu}}{D\tau^2} = -R^{\mu}{}_{\nu\rho\sigma}\zeta^{\rho}\frac{dx^{\nu}}{d\tau}\frac{dx^{\sigma}}{d\tau}.
$$
\n(57)

This is the equation of geodesic deviation, which expresses the relative motion of nearby particles in terms of a tidal force determined by the Riemann tensor.

GEODESIC DEVIATION IV

 \triangleright Given a point P along a geodesic, there always exists a coordinate transformation that will make the Christoffel symbols vanish at P:

$$
\Gamma^{\mu}_{\nu\rho}(P) = 0. \tag{58}
$$

- \triangleright This is just the Local Lorentz Frame
- \triangleright Furthermore, let us consider particles which move non-relativistically,
- i.e. spatial motion $dx^{i}/d\tau$ is negligible compared to $dx^{0}/d\tau$.
- Eq. (55) becomes

$$
\frac{d^2\zeta^i}{d\tau^2} + \zeta^\sigma \partial_\sigma \Gamma^i_{00} \left(\frac{dx^0}{d\tau}\right)^2 = 0.
$$
 (59)

GEODESIC DEVIATION V

- ► Quantity $\partial_{\sigma} \Gamma_{00}^{i}$ is evaluated at the point P, i.e., at $x^{i} = 0$,
- \blacktriangleright Metric is of the form

$$
g_{\mu\nu} = \eta_{\mu\nu} + \mathcal{O}(x^i x^j) \tag{60}
$$

\blacktriangleright Therefore

$$
\zeta^{\sigma} \partial_{\sigma} \Gamma^i_{00} = \zeta^j \partial_j \Gamma^i_{00} \tag{61}
$$

- Since at P both $\Gamma^{\mu}_{\nu\rho} = 0$ and $\partial_0 \Gamma^i_{0j} = 0$,
- \triangleright One has

$$
R^{i}_{0j0} = \partial_{j}\Gamma^{i}_{00} - \partial_{0}\Gamma^{i}_{0j} = \partial_{j}\Gamma^{i}_{00}
$$
 (62)

GEODESIC DEVIATION VI

 \blacktriangleright Finally

$$
\frac{d^2\zeta^i}{d\tau^2} = -R^i_{0j0}\zeta^j \left(\frac{dx^0}{d\tau}\right)^2.
$$
\n(63)

- If the test masses are moving non-relativistically then $dx^0/d\tau \simeq c$ and $\tau = t$
- \triangleright We finally arrive at

$$
\ddot{\zeta}^i = -c^2 R^i_{\ 0j0} \zeta^j,\tag{64}
$$

 \triangleright where a dot denotes derivation with respect to t.

Riemann Tensor

- In the linearized theory, Riemann tensor is *invariant*
- Evaluating (11) in the TT frame we get

$$
R^{i}_{0j0} = R_{i0j0} = -\frac{1}{c^2} \ddot{h}_{ij}^{\text{TT}}.
$$
 (65)

In Hence, at the point P, the geodesic deviation equation reduces to

$$
\ddot{\zeta}^i = \frac{1}{2} \ddot{h}_{ij}^{\rm TT} \zeta^j. \tag{66}
$$

- \triangleright Monochromatic gravitational wave propagating in the z-direction
- In Study its effect on test particles in the (x, y) plane.
- \triangleright Focus on the $+$ polarization.
- In At $z = 0$ and choosing the origin of time such that $h_{ij}^{TT} = 0$ at $t=0,$

$$
h_{ij}^{\text{TT}} = h_{+} \sin(\omega t) \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij} . \tag{67}
$$

 \triangleright Consider a point particle in the (x, y) plane

$$
\zeta^{i} = (x_0 + \delta x(t), y_0 + \delta y(t), 0)
$$
\n(68)

- ightharpoonup where (x_0, y_0) is the unperturbed position and $\delta x(t)$, $\delta y(t)$ the displacement caused by the gravitational wave.
- From Eq. (66) and assuming that (x_0, y_0) and $(0, 0)$ are on "nearby" geodesics,

$$
\delta \ddot{x} = -\frac{h_+}{2} (x_0 + \delta x) \,\omega^2 \sin(\omega t),
$$

\n
$$
\delta \ddot{y} = +\frac{h_+}{2} (y_0 + \delta y) \,\omega^2 \sin(\omega t).
$$
 (69)

 \triangleright Assume small displacements compared with the unperturbed position, $\delta x \ll x_0$ and $\delta y \ll y_0$

$$
\delta \ddot{x} = -\frac{h_+}{2} x_0 \,\omega^2 \sin(\omega t),
$$

\n
$$
\delta \ddot{y} = +\frac{h_+}{2} y_0 \,\omega^2 \sin(\omega t),
$$
\n(70)

 \triangleright which integrates to

$$
\delta x(t) = \frac{h_+}{2} x_0 \,\omega^2 \sin(\omega t),
$$

\n
$$
\delta y(t) = -\frac{h_+}{2} y_0 \,\omega^2 \sin(\omega t).
$$
 (71)

WAVES IV

 \triangleright Completely analogously, for the cross polarization

$$
\delta x(t) = \frac{h_{\times}}{2} y_0 \,\omega^2 \sin(\omega t),
$$

$$
\delta y(t) = \frac{h_{\times}}{2} x_0 \,\omega^2 \sin(\omega t).
$$
 (72)

WAVES_V

Deformation of a ring of test particles

The deformation of a ring of test particles due to the $+$ and \times polarizations.

Higher Order Einstein's Field Equations I

► Linearized Einstein equations in vacuum are

$$
R_{\mu\nu}^{(1)} - \frac{1}{2} \eta_{\mu\nu} R^{(1)} = 0,\t\t(73)
$$

- ► Where $R_{\mu\nu}^{(1)}$ is the Ricci tensor up to linear terms in the small perturbation $h_{\mu\nu}$ around the flat background $\eta_{\mu\nu}$
- \triangleright Computed from the linearized Riemann tensor Eq. (11)
- \triangleright Schematically, the linearized Einstein equations can be written as

$$
G_{\mu\nu}^{(1)}[h_{\rho\sigma}] = 0,\t\t(74)
$$

• where $G_{\mu\nu}^{(1)}$ is the Einstein tensor to first order in $h_{\mu\nu}$ and its derivatives.

Higher Order Einstein's Field Equations II

- If Given a solution $h_{\mu\nu}$ of the linearized Einstein equations, the metric $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ will generally not be a solution to the full Einstein equations.
- ► Does not even solve second order Einstein equations
- Indeed, expanding the Einstein tensor as

$$
G_{\mu\nu}[h_{\rho\sigma}] = G_{\mu\nu}^{(1)}[h_{\rho\sigma}] + G_{\mu\nu}^{(2)}[h_{\rho\sigma}] + \dots \tag{75}
$$

• where $G_{\mu\nu}^{(2)}$ collects all second order terms

► Typically, $G_{\mu\nu}^{(2)}[h_{\rho\sigma}]\neq 0$.

Higher Order Einstein's Field Equations III

 \triangleright The second order Einstein equations are

$$
G_{\mu\nu}^{(1)}[h_{\rho\sigma}] + G_{\mu\nu}^{(2)}[h_{\rho\sigma}] = 0.
$$
 (76)

 \triangleright Suppose a solution $h_{\mu\nu}$ of the linearized equations Eq. (74) If we have

$$
G_{\mu\nu}^{(2)}[h_{\rho\sigma}] \neq 0 \tag{77}
$$

 \triangleright Second order equation Eq. (76) does not hold.

Higher Order Einstein's Field Equations IV

- \triangleright Correct the second order equation Eq. (76) by adding smaller correction $h_{\mu\nu}^{(2)}$
- \blacktriangleright These have to satisfy

$$
G_{\mu\nu}^{(2)}[h_{\rho\sigma}] + G_{\mu\nu}^{(1)}[h_{\rho\sigma}^{(2)}] = 0.
$$
 (78)

 \triangleright We can write this in the form

$$
G_{\mu\nu}^{(1)}[h_{\mu\nu}^{(2)}] = \frac{8\pi G}{c^4} t_{\mu\nu} \tag{79}
$$

 \triangleright with the identification that

$$
t_{\mu\nu} = -\frac{c^4}{8\pi G} G^{(2)}_{\mu\nu} [h_{\rho\sigma}].
$$
\n(80)

Higher Order Einstein's Field Equations V

 \triangleright The corrected Einstein equations then become

$$
G_{\mu\nu}^{(1)}[h_{\rho\sigma} + h_{\rho\sigma}^{(2)}] = \frac{8\pi G}{c^4} t_{\mu\nu},\tag{81}
$$

 \triangleright where we have

$$
t_{\mu\nu} = -\frac{c^4}{8\pi G} G^{(2)}_{\mu\nu} [h_{\rho\sigma}].
$$
 (82)

- In To second order, $h_{\mu\nu}$ causes the same correction to the spacetime metric as would be produced by additional ordinary matter with stress-energy tensor $t_{\mu\nu}$.
- In Note that $t_{\mu\nu}$ is symmetric, and if $h_{\mu\nu}$ satisfies the linearized Einstein equations then $\partial^{\mu} t_{\mu\nu} = 0$, hence it is conserved.

SPATIAL AVERAGING I

- It is tempting to regard $t_{\mu\nu}$ as the stress-energy tensor of the gravitational field itself, valid to second order in deviation from flatness.
- I However, $t_{\mu\nu}$ is not gauge invariant
- \triangleright Changes under the transformations Eq. (8).

In general relativity there is no local notion of the energy density of the gravitational field.

SPATIAL AVERAGING II

- Evaluating $t_{\mu\nu}$ by averaging it over a small spatial volume surrounding that point
- Obtain a gauge-invariant quantity.

$$
t_{\mu\nu} = -\frac{c^4}{8\pi G} \left\langle R_{\mu\nu}^{(2)} - \frac{1}{2} \eta_{\mu\nu} R^{(2)} \right\rangle, \tag{83}
$$

 \triangleright where $\langle \ldots \rangle$ denotes the average over a bounded spatial volume

SPATIAL AVERAGING III

 \triangleright Second order contributions to the Ricci tensor are

$$
R_{\mu\nu}^{(2)} = \frac{1}{2} \left[\frac{1}{2} \partial_{\mu} h_{\rho\sigma} \partial_{\nu} h^{\rho\sigma} + h^{\rho\sigma} \partial_{\mu} \partial_{\nu} h_{\rho\sigma} - h^{\rho\sigma} \partial_{\nu} \partial_{\sigma} h_{\rho\mu} - h^{\rho\sigma} \partial_{\mu} \partial_{\sigma} h_{\rho\nu} \right]
$$

$$
h^{\rho\sigma} \partial_{\rho} \partial_{\sigma} h_{\mu\nu} + \partial^{\sigma} h^{\rho}_{\nu} \partial_{\sigma} h_{\rho\mu} - \partial^{\sigma} h^{\rho}_{\nu} \partial_{\rho} h_{\sigma\mu} - \partial_{\sigma} h^{\rho\sigma} \partial_{\nu} h_{\rho\mu}
$$

$$
+ \partial_{\sigma} h^{\rho\sigma} \partial_{\rho} h_{\mu\nu} - \partial_{\sigma} h^{\rho\sigma} \partial_{\mu} h_{\rho\nu} - \frac{1}{2} \partial^{\rho} h \partial_{\rho} h_{\mu\nu} + \frac{1}{2} \partial^{\rho} h \partial_{\nu} h_{\rho\mu}
$$

$$
+ \frac{1}{2} \partial^{\rho} h \partial_{\mu} h_{\rho\nu} \right]. \tag{84}
$$

- Due to the averaging in Eq. (83), the expression for $t_{\mu\nu}$ will end up being quite simple.
- In Discard boundary terms since we assume an integration volume with a boundary
- In Time dependence of $h_{\mu\nu}$ will be through a retarded time

▶ But then
$$
\partial_0 h_{\mu\nu} = -\partial_z h_{\mu\nu}
$$
.

Stress-energy Psuedo Tensor I

 \triangleright Make all terms in Eq. (84) except for first two vanish using

- ► Gauge condition $\partial_{\mu}h^{\mu\nu} = 0$
- **F** Tracelessness condition $h = 0$
- Field equations $\Box h_{\mu\nu} = 0$

► Remaining terms can be combined to get

$$
\langle R_{\mu\nu}^{(2)} \rangle = -\frac{1}{4} \langle \partial_{\mu} h_{\rho\sigma} \partial_{\nu} h^{\rho\sigma} \rangle. \tag{85}
$$

 \blacktriangleright Thus, we arrive at

$$
t_{\mu\nu} = \frac{c^4}{32\pi G} \langle \partial_{\mu} h_{\rho\sigma} \partial_{\nu} h^{\rho\sigma} \rangle.
$$
 (86)

[Linearised Gravity](#page-4-0) [Effects of GWs](#page-30-0) [Energy & Momentum](#page-42-0) [Generation of GWs](#page-59-0) 000

Stress-energy Psuedo Tensor II

In The change in $t_{\mu\nu}$ under the gauge transformations Eq. (8)

$$
\delta t_{\mu\nu} = \frac{c^4}{32\pi G} \langle \partial_{\mu} h_{\rho\sigma} \partial_{\nu} (\delta h^{\rho\sigma}) + \partial_{\mu} (\delta h_{\rho\sigma}) \partial_{\nu} h^{\rho\sigma} \rangle
$$

=
$$
\frac{c^4}{32\pi G} \langle \partial_{\mu} h_{\rho\sigma} \partial_{\nu} (\partial^{\rho} \xi^{\sigma} + \partial^{\sigma} \xi^{\rho}) + (\mu \leftrightarrow \nu) \rangle
$$

=
$$
\frac{c^4}{16\pi G} \langle \partial_{\mu} h_{\rho\sigma} \partial_{\nu} \partial^{\rho} \xi^{\sigma} + (\mu \leftrightarrow \nu) \rangle.
$$
 (87)

Inside the average $\langle \ldots \rangle$ we can

- **►** integrate ∂^{ρ} by parts
- ► use the gauge condition $\partial^{\rho}h_{\rho\sigma} = 0$.

Interaction $\delta t_{\mu\nu} = 0$, and $t_{\mu\nu}$ is gauge invariant.

Stress-energy Psuedo Tensor III

- \blacktriangleright Hence it only depends on the physical content of the spacetime perturbation $h_{\mu\nu}$
- In that gauge, the energy gravitational energy density is

$$
t^{00} = \frac{c^2}{32\pi G} \langle \dot{h}_{ij}^{\text{TT}} \dot{h}_{ij}^{\text{TT}} \rangle,\tag{88}
$$

where the dot denotes derivation w.r.t. time; note that $\partial_0 = (1/c)\partial_t.$

In terms of the two gravitational wave polarizations

$$
t^{00} = \frac{c^2}{16\pi G} \langle \dot{h}_+^2 + \dot{h}_\times^2 \rangle.
$$
 (89)

ENERGY OF GRAVITATIONAL WAVES I

 \triangleright Gravitational energy inside volume V is

$$
E_V = \int_V d^3x \, t^{00}.\tag{90}
$$

 \triangleright The gravitational energy going through surface S per unit of time is then given by

$$
\frac{dE_{\rm GW}}{dt} = -\int_V d^3x \,\partial_t t^{00},\tag{91}
$$

 \triangleright Where the minus sign indicates that we are interested in the energy leaving the surface.

ENERGY OF GRAVITATIONAL WAVES II

► Using conservation of gravitational stress-energy $\partial_\mu t^{\mu\nu}=0$

$$
\frac{1}{c}\frac{dE_{\text{GW}}}{dt} = \int_{V} d^{3}x \, \partial_{i}t^{0i}
$$

$$
= \int_{S} dA \, n_{i}t^{0i}, \tag{92}
$$

- In where dA is the infinitesimal surface element and $\hat{\mathbf{n}}$ the unit normal to S.
- If S is a sphere then
	- Init vector $\hat{\mathbf{n}} = \hat{r}$
	- \blacktriangleright $dA = r^2 d\Omega$, with r the sphere's radius
	- $\blacktriangleright d\Omega = \sin(\theta) d\theta d\phi$ in the usual angular coordinates (θ, ϕ) .

ENERGY OF GRAVITATIONAL WAVES III

 \triangleright One then has

$$
\frac{dE_{\rm GW}}{dt} = cr^2 \int d\Omega \, t^{0r},\tag{93}
$$

$$
t^{0r} = \frac{c^4}{32\pi G} \left\langle \partial^0 \dot{h}_{ij}^{\text{TT}} \partial^r h_{ij}^{\text{TT}} \right\rangle.
$$
 (94)

If r is sufficiently large, a gravitational wave propagating radially outward has the form

$$
h_{ij}^{\rm TT} = \frac{1}{r} f_{ij}(t - r/c).
$$
 (95)

 \triangleright The derivative with respect to r then gives

$$
\frac{\partial}{\partial r} h_{ij}^{\text{TT}} = -\frac{1}{r^2} f_{ij}(t - r/c) + \frac{1}{r} \frac{\partial}{\partial r} f_{ij}(t - r/c). \tag{96}
$$

[Linearised Gravity](#page-4-0) [Effects of GWs](#page-30-0) [Energy & Momentum](#page-42-0) [Generation of GWs](#page-59-0)

ENERGY OF GRAVITATIONAL WAVES IV

 \triangleright Note that

$$
\frac{\partial}{\partial r} f_{ij}(t - r/c) = -\frac{1}{c} \frac{\partial}{\partial t} f_{ij}(t - r/c),\tag{97}
$$
\n
$$
\frac{\partial}{\partial r} h_{ij}^{\text{TT}} = -\partial_0 h_{ij}^{\text{TT}} + \mathcal{O}\left(\frac{1}{r^2}\right)
$$
\n
$$
= +\partial^0 h_{ij}^{\text{TT}} + \mathcal{O}\left(\frac{1}{r^2}\right).
$$
\n
$$
(98)
$$

Hence, at large distances one has $t^{0r} = t^{00}$, and

$$
\frac{dE_{\rm GW}}{dt} = cr^2 \int d\Omega \, t^{00}.\tag{99}
$$

ENERGY OF GRAVITATIONAL WAVES V

In Using expression Eq. (88) for the gravitational energy density,

$$
\frac{dE_{\rm GW}}{dt} = \frac{c^3 r^2}{32\pi G} \int d\Omega \, \langle \dot{h}_{ij}^{\rm TT} \dot{h}_{ij}^{\rm TT} \rangle,\tag{100}
$$

 \triangleright or in terms of the two polarizations,

$$
\frac{dE_{\rm GW}}{dt} = \frac{c^3 r^2}{16\pi G} \int d\Omega \,\langle \dot{h}_+^2 + \dot{h}_\times \rangle. \tag{101}
$$

Thus, gravitational waves carry away energy, which they can deposit into physical systems.

- ightharpoontriangleright values also carry momentum.
- \triangleright Given a volume V, the gravitational momentum inside it is

$$
P^k = \frac{1}{c} \int_V d^3x \, t^{0k}.\tag{102}
$$

 \triangleright Outgoing momentum per unit time is

$$
\frac{\partial P_{\rm GW}^k}{dt} = -\int_V d^3x \,\partial_0 t^{0k}
$$

$$
= r^2 \int_S d\Omega t^{0k}.\tag{103}
$$

In Using Eq. (86) we arrive at

$$
\frac{\partial P_{\rm GW}^k}{dt} = -\frac{c^3 r^2}{32\pi G} \int_S d\Omega \, \langle \dot{h}_{ij}^{\rm TT} \partial^k h_{ij}^{\rm TT} \rangle. \tag{104}
$$

GREEN'S FUNCTIONS I

 \triangleright The field equations of linearized gravity are Eq. (17).

$$
\Box \bar{h}_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu},\tag{105}
$$

- \triangleright Since these are linear equations, they can be solved using Green's functions.
- \triangleright The appropriate Green's function here is the one that solves the equation

$$
\Box_x G(x - x') = \delta^4(x - x'),\tag{106}
$$

- \triangleright where x, x' are any two spacetime points
- ^I derivatives in the LHS are with respect to the components of $x = (ct, \mathbf{x}).$

GREEN'S FUNCTIONS II

For a given $T_{\mu\nu}$, the solution to Eq. (105) is

$$
\bar{h}_{\mu\nu}(x) = -\frac{16\pi G}{c^4} \int d^4x' G(x - x') T_{\mu\nu}.
$$
 (107)

 \triangleright Choosing boundary conditions such that there is no incoming radiation from infinity retarded Green's function

$$
G(x - x') = -\frac{1}{4\pi|\mathbf{x} - \mathbf{x}'|} \delta(x_{\text{ret}}^0 - x'^0),\tag{108}
$$

- \blacktriangleright Where $x'^0 = ct', x_{\text{ret}}^0 = ct_{\text{ret}}$
- Retarded time t_{ret} is given by

$$
t_{\rm ret} = t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}.
$$
 (109)

[Linearised Gravity](#page-4-0) [Effects of GWs](#page-30-0) [Energy & Momentum](#page-42-0) [Generation of GWs](#page-59-0)

GREEN'S FUNCTIONS III

 \blacktriangleright Eq. (107) then becomes

$$
\bar{h}_{\mu\nu}(t,\mathbf{x}) = \frac{4G}{c^4} \int d^3x' \frac{1}{|\mathbf{x} - \mathbf{x}'|} T_{\mu\nu} \left(t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}, \mathbf{x}' \right). \tag{110}
$$

PROJECTION OPERATOR I

- ► Look for solution in the TT-gauge.
- In Let $\hat{\mathbf{n}}$ be the direction of propagation of a gravitational wave.
- \triangleright Then the following operator removes the component of any spatial vector along the direction $\hat{\mathbf{n}}$:

$$
P_{ij} \equiv \delta_{ij} - n_i n_j. \tag{111}
$$

Given a spatial vector v^i , the vector $w^i = P_{ij}v^j$ is transverse:

$$
\hat{\mathbf{n}} \cdot \mathbf{w} = n^i P_{ij} v^j = 0.
$$
 (112)

 \blacktriangleright P_{ij} is a projector:

$$
P_{ik}P_{kj} = P_{ij}.\tag{113}
$$

PROJECTION OPERATOR II

In Using P_{ij} , we now construct

$$
\Lambda_{ij,kl}(\hat{\mathbf{n}}) = P_{ik}P_{jl} - \frac{1}{2}P_{ij}P_{kl}.
$$
\n(114)

 \triangleright This is also a projector, in the sense that

$$
\Lambda_{ij,kl}\Lambda_{kl,mn} = \Lambda_{ij,mn}.\tag{115}
$$

- It is transverse in all indices: $n^i \Lambda_{ij,kl} = 0$, $n^j \Lambda_{ij,kl} = 0$
- \triangleright It is also traceless with respect to the first and last index pairs:

$$
\Lambda_{ii,kl} = \Lambda_{ij,kk} = 0. \tag{116}
$$

Finally, it is symmetric under the interchange $(i, j) \leftrightarrow (k, l)$:

$$
\Lambda_{ij,kl} = \Lambda_{kl,ij}.\tag{117}
$$

[Linearised Gravity](#page-4-0) [Effects of GWs](#page-30-0) [Energy & Momentum](#page-42-0) [Generation of GWs](#page-59-0) 000

PROJECTION OPERATOR III

In The explicit expression for $\Lambda_{i,j,kl}$ is:

$$
\Lambda_{ij,kl}(\hat{\mathbf{n}}) = \delta_{ik}\delta_{jl} - \frac{1}{2}\delta_{ij}\delta_{kl} - n_jn_l\delta_{ik} - n_in_k\delta_{jl}
$$

$$
+ \frac{1}{2}n_kn_l\delta_{ij} + \frac{1}{2}n_in_j\delta_{kl} + \frac{1}{2}n_in_jn_kn_l. \tag{118}
$$

 \triangleright The projection is equivalent to performing a gauge transformation that brings $h_{\mu\nu}$ into the TT gauge

$$
h_{ij}^{\rm TT} = \Lambda_{ij,kl} h_{kl} \tag{119}
$$

Multipole Expansion I

 \triangleright Outside the source, the solutions to Eq. (105) in the TT-gauge take the form

$$
h_{ij}^{\rm TT}(t, \mathbf{x}) = \frac{4G}{c^4} \Lambda_{ij,kl}(\hat{\mathbf{n}}) \int d^3x' \frac{1}{|\mathbf{x} - \mathbf{x}'|} T_{kl} \left(t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}, \mathbf{x}' \right).
$$
\n(120)

- If Study behavior of h_{ij}^{TT} far from the source, at a distance r that is much larger than the source's size, d.
- In that case we can expand

$$
|\mathbf{x} - \mathbf{x}'| = r - \mathbf{x}' \cdot \hat{\mathbf{n}} + \mathcal{O}\left(\frac{d^2}{r}\right). \tag{121}
$$

MULTIPOLE EXPANSION II

 \triangleright To very good approximation, Eq. (120) can be written as

$$
h_{ij}^{\rm TT}(t, \mathbf{x}) = \frac{4G}{c^4} \Lambda_{ij,kl}(\hat{\mathbf{n}}) \int d^3x' \frac{1}{|\mathbf{x} - \mathbf{x}'|} T_{kl} \left(t - \frac{r}{c} + \frac{\mathbf{x}' \cdot \hat{\mathbf{n}}}{c}, \mathbf{x}' \right). \tag{122}
$$

 \triangleright To see how further simplifications can be made, it is useful to Fourier-expand the stress tensor:

$$
T_{kl}\left(t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}, \mathbf{x}'\right) = \int \frac{d^4k}{(2\pi)^4} \tilde{T}_{kl}(\omega, \mathbf{k}) e^{-i\omega(t - r/c + \mathbf{x}' \cdot \hat{\mathbf{n}}) + i\mathbf{k} \cdot \mathbf{x}'}.
$$
\n(123)

- For a typical source, $T_{ii}(\omega, \mathbf{k})$ will only have power up to some maximum frequency ω_s .
- If the source is non-relativistic then $\omega_s d \ll c$.

Multipole Expansion III

- In addition we have $|\mathbf{x}'| \lesssim d$.
- **►** Hence the frequencies ω where $h_{\mu\nu}^{TT}$ receives its main contributions are such that

$$
\frac{\omega}{c} \mathbf{x}' \cdot \hat{\mathbf{n}} \lesssim \frac{\omega_s d}{c} \ll 1. \tag{124}
$$

► Hence, in the exponent of Eq. (123) we can use $\omega \mathbf{x}' \cdot \hat{\mathbf{n}}/c$ as an expansion parameter:

$$
e^{-i\omega(t-r/c+\mathbf{x}'\cdot\hat{\mathbf{n}}/c)+i\mathbf{k}\cdot\mathbf{x}'} = e^{-i\omega(t-r/c)} \left[1 - i\frac{\omega}{c} x^{i} n^{i} + \frac{1}{2} \left(-i\frac{\omega}{c}\right)^2 x^{i} x^{i} n^{i} n^{j} + \dots\right]
$$
(125)

Multipole Expansion IV

In the time domain, this is equivalent to expanding

$$
T_{kl}\left(t-\frac{r}{c}+\frac{\mathbf{x}'\cdot\hat{\mathbf{n}}}{c},\mathbf{x}'\right) = T_{kl}(t-r/c,\mathbf{x}') + \frac{x'^{i}n^{i}}{c}\partial_{0}T_{kl}
$$

$$
+\frac{1}{2c^{2}}x'^{i}x'^{j}n^{i}n^{j}\partial_{0}^{2}T_{kl} + ..., \qquad (126)
$$

 \triangleright where the derivatives in the RHS are evaluated at $(t - r/c, \mathbf{x}')$. \triangleright Now introduce the multipole moments of the stress tensor T_{ij} :

$$
S^{ij} = \int d^3x T^{ij}(t, \mathbf{x}),
$$

\n
$$
S^{ij,k} = \int d^3x T^{ij}(t, \mathbf{x}) x^k,
$$

\n
$$
S^{ij,kl} = \int d^3x T^{ij}(t, \mathbf{x}) x^k x^l,
$$

Tjonnie Li Intensive course in Physics: Gravitational Waves 68

. . . (127)

MULTIPOLE EXPANSION V

 \blacktriangleright Then substituting the expansion Eq. (126) into Eq. (122)

$$
h_{ij}^{\rm TT} = \frac{1}{r} \frac{4G}{c^4} \Lambda_{ij,kl}(\hat{\mathbf{n}}) \left[S^{kl} + \frac{1}{c} n_m \dot{S}^{kl,m} + \frac{1}{2c^2} n_m n_p \ddot{S}^{kl,mp} + \ldots \right]_{\rm ret},
$$
\n(128)

- In where $[\ldots]_{\text{ret}}$ indicates that the expression in brackets is being evaluated at the retarded time $t - r/c$.
- Expansion in v/c , where v is a characteristic velocity.

Multipole Expansion VI

- \blacktriangleright Compared to S^{kl} , the moment $S^{kl,m}$ has an additional factor $x^m \sim \mathcal{O}(d)$
- Each time derivative brings in a factor $\mathcal{O}(\omega_s)$
- ► Combined with the 1/c this gives a factor $\mathcal{O}(\omega_s d/c)$.
- ► Defining $v \equiv \omega_s d$, this means that the term $(1/c)n_m \dot{S}^{kl,m}$ is a correction of $\mathcal{O}(v/c)$ to the term S^{kl} .
- Similary the term $(1/2c^2)n_m n_p \ddot{S}^{kl,mp}$ is a correction of $\mathcal{O}(v^2/c^2)$, and so on

Mass and Momenthum Multipoles I

- In The expansion [\(128\)](#page-69-0) depends on the moments of the stresses T_{ii}
- \triangleright Instead have an expansion in moments of
	- \blacktriangleright mass density $(1/c^2)T^{00}$
	- momentum density $(1/c)T^{0i}$.

 \triangleright The mass moments are defined as

$$
M = \frac{1}{c^2} \int d^3x T^{00}(t, \mathbf{x}),
$$

\n
$$
M^i = \frac{1}{c^2} \int d^3x T^{00}(t, \mathbf{x}) x^i,
$$

\n
$$
M^{ij} = \frac{1}{c^2} \int d^3x T^{00}(t, \mathbf{x}) x^i x^j,
$$

\n
$$
M^{ijk} = \frac{1}{c^2} \int d^3x T^{00}(t, \mathbf{x}) x^i x^j x^k,
$$

. . . (129)

Mass and Momenthum Multipoles II

 \triangleright while the momentum density moments are given by

$$
P^{i} = \frac{1}{c} \int d^{3}x T^{0i}(t, \mathbf{x}),
$$

\n
$$
P^{ij} = \frac{1}{c} \int d^{3}x T^{0i}(t, \mathbf{x}) x^{j},
$$

\n
$$
P^{ijk} = \frac{1}{c} \int d^{3}x T^{0i}(t, \mathbf{x}) x^{j} x^{k},
$$

. . . (130)

[Linearised Gravity](#page-4-0) [Effects of GWs](#page-30-0) [Energy & Momentum](#page-42-0) [Generation of GWs](#page-59-0)

Mass and Momenthum Multipoles III

S

Express the stress moments Eq. (127) as combinations of mass and momentum density moments.

$$
\begin{aligned}\n^{ij} &= \int d^3x \, T^{ij} \\
&= \int d^3x \, \delta_k^i \delta_l^j T^{kl} \\
&= \int d^3x \, (\partial_k x^i)(\partial_l x^j) \, T^{kl} \\
&= - \int d^3x \, x^i (\partial_l x^j) \, \partial_k T^{kl} \\
&= \int d^3x \, x^i (\partial_l x^j) \, \partial_0 T^{0l}.\n\end{aligned} \tag{131}
$$

[Linearised Gravity](#page-4-0) [Effects of GWs](#page-30-0) [Energy & Momentum](#page-42-0) [Generation of GWs](#page-59-0) o
ooooo ooooo ooooo ooooo ooooo ooo

Mass and Momenthum Multipoles IV

 \blacktriangleright Similarly, we can write

$$
S^{ij} = -\int d^3x \, x^i x^j \partial_0^2 T^{00} - \int d^3x \delta^i_i x^j \partial_0 T^{0l}
$$

=
$$
\int d^3x \, x^i x^j \partial_0^2 T^{00} + \int d^3x^j \partial_k T^{ki}
$$

=
$$
\frac{1}{c^2} \int d^3x \, x^i x^j \ddot{T}^{00} - \int d^3x T^{ij}
$$

=
$$
\ddot{M}^{ij} - S^{ij}
$$
 (132)

$$
S^{ij} = \frac{1}{2} \ddot{M}^{ij}.
$$

Mass and Momenthum Multipoles V

 \triangleright To leading order in v/c , the metric perturbation in the TT-gauge takes the form

$$
\left[h_{ij}^T(t, \mathbf{x})\right]_{\text{quad}} = \frac{1}{r} \frac{2G}{c^2} \Lambda_{ij,kl}(\hat{\mathbf{n}}) \ddot{M}^{kl}(t - r/c). \tag{134}
$$

- \triangleright This is the mass quadrupole radiation.
- In Note that Λ_{iikl} contracted with \ddot{M}^{kl} makes the latter traceless,
- In Eq. (134) we can replace M^{kl} by

$$
Q^{ij} \equiv M^{ij} - \frac{1}{3} \delta^{ij} M_{kk}.
$$
 (135)

In The tensor Q^{ij} related to the quadrupole tensor from Newtonian theory

$$
Q^{ij} = \int d^3x \,\rho(t, \mathbf{x}) \left(x^i x^j - \frac{1}{3} r^2 \delta^{ij} \right). \tag{136}
$$

Mass and Momenthum Multipoles VI

In this approximation, we find

$$
\left[h_{ij}^T(t, \mathbf{x})\right]_{\text{quad}} = \frac{1}{r} \frac{2G}{c^4} \ddot{Q}_{ij}^{\text{TT}}(t - r/c),\tag{137}
$$

 \blacktriangleright where Q_{ij}^{TT} is the transverse part of the (already traceless) tensor Q_{ij} :

$$
Q_{ij}^{\text{TT}} = \Lambda_{ij,kl}(\mathbf{n}) Q_{ij}.
$$
 (138)

CONSERVATION OF MASS AND MOMENTUM

- \triangleright There is no monopole or dipole gravitational radiation.
- In These contributions would have depended on time derivatives of the mass monopole M and the momentum dipole P^i .

$$
\dot{M} = \frac{1}{c} \int d^3 x \, \partial_0 T^{00}
$$
\n
$$
= -\frac{1}{c} \int d^3 x \, \partial_i T^{0i}
$$
\n
$$
= 0,
$$
\n(139)

 \blacktriangleright Can show that $\dot{P}^i = 0$.

Conservation of total mass and momentum is responsible for the absence of monopole or dipole radiation.

QUADRUPOLE RADIATION I

- \triangleright Focus the quadrupole expression Eq. (137)
- \triangleright What radiation is emitted depends on the direction $\hat{\mathbf{n}}$.
- I However, without loss of generality we can set $\hat{\mathbf{n}} = \hat{\mathbf{z}}$,
- In The projector $P_{ij} = \delta_{ij} n_i n_j$ becomes

$$
P = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right) \tag{140}
$$

For any 3×3 matrix A_{ij} ,

$$
\Lambda_{ij,kl} A_{kl} = \left[P_{ik} P_{jl} - \frac{1}{2} P_{ij} P_{kl} \right] A_{kl}
$$

$$
= (PAP)_{ij} - \frac{1}{2} P_{ij} \text{Tr}(PA). \tag{141}
$$

Quadrupole Radiation II

In Using Eq. (140) we get

$$
PAP = \left(\begin{array}{ccc} A_{11} & A_{12} & 0 \\ A_{21} & A_{22} & 0 \\ 0 & 0 & 0 \end{array}\right),\tag{142}
$$

In while Tr(PA) = $A_{11} + A_{22}$.

 \blacktriangleright Therefore

$$
\Lambda_{ij,kl} A_{kl} = \begin{pmatrix} A_{11} & A_{12} & 0 \\ A_{21} & A_{22} & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij} - \frac{A_{11} + A_{22}}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij}
$$

$$
= \begin{pmatrix} (A_{11} - A_{22})/2 & A_{12} & 0 \\ A_{21} & -(A_{11} - A_{22})/2 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij}.
$$
(143)

[Linearised Gravity](#page-4-0) [Effects of GWs](#page-30-0) [Energy & Momentum](#page-42-0) [Generation of GWs](#page-59-0)

Quadrupole Radiation III

In Thus, when $\hat{\mathbf{n}} = \hat{\mathbf{z}}$,

$$
\Lambda_{ij,kl}\ddot{M}_{kl} = \begin{pmatrix} (\ddot{M}_{11} - \ddot{M}_{22})/2 & \ddot{M}_{12} & 0 \\ \ddot{M}_{21} & -(\ddot{M}_{11} - \ddot{m}_{22})/2 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij}
$$
\n(144)

 \blacktriangleright We arrive at

$$
h_{ij}^{\text{TT}} = \begin{pmatrix} h_+ & h_\times & 0 \\ h_\times & -h_+ & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij}, \qquad (145)
$$

Quadrupole Radiation IV

 \triangleright we can immediately read off the two gravitational-wave polarizations:

$$
h_{+} = \frac{1}{r} \frac{G}{c^{4}} (\ddot{M}_{11} - \ddot{M}_{22}),
$$

\n
$$
h_{\times} = \frac{2}{r} \frac{G}{c^{4}} \ddot{M}_{12},
$$
\n(146)

 \triangleright where in each case the RHS is computed at the retarded time $t - r/c$.