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Linearised Gravity Effects of GWs Energy & Momentum Generation of GWs

Instanteneous Forces

I In Newton’s theory of gravity, any changes in the distribution of
matter are felt instantaneously at arbitrarily large distances.

I Governed by the Poisson equation

∇2Φ = 4πGρ (1)

I Considered unsatisfactory already by some of his
contemporaries in the late 17th century.

I Prominent scientists (e.g. Laplace) tried to come up with some
dynamical mechanism

I Even bigger problem when special relativity (1905) was
introduced

I Strict speed limit on communication of any kind
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Electromagnetism
I Maxwell’s theory of electromagnetism does not have

instantaneous action at a distance.
I E and B at a distance r from the source depend on what the

source was doing at a time t− r/c.
I The time lag, r/c, is the time needed for a signal to cross the

distance r if it traveled at the speed of light: electromagnetism
obeys Einstein’s speed limit.

I E and B obey a wave equation(
c2∇2 − ∂2t

)
E = 0 (2)(

c2∇2 − ∂2t
)
B = 0 (3)

I Changes in a charge/current distribution are communicated to
the rest of space by electromagnetic waves.

Electromagnetic field does not just “track” its sources; it has
dynamics of its own.
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General Relativity

I After special relativity was developed it was soon speculated
that the gravitational field might also be dynamical.

I Changes in the gravitational field should propagate in a
wave-like fashion, no faster than the speed of light

I Eliminating instantaneous action at a distance.
I General theory of relativity of 1916 indeed incorporated all

these ideas.

General Relativity predicts the existence of gravitational waves

Tjonnie Li Intensive course in Physics: Gravitational Waves 3



Linearised Gravity Effects of GWs Energy & Momentum Generation of GWs

Weak Fields

I Study GWs in the regime where gravitational fields are weak.
I Write spacetime metric gµν as the Minkowski spacetime ηµν plus

a small correction hµν :

gµν = ηµν + hµν , |hµν | � 1. (4)

I Write the Einstein equations to first order in hµν ,
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Coordinate transforms I

I Einstein Field equations are invariant under general coordinate
transformations,

xµ −→ x′µ(x), (5)

I Metric transforms as

gµν(x) −→ g′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (6)

I This invariance is broken when we choose a fixed background
ηµν as in Eq. (4)

I Instead, we look for a specific reference frame where Eq. (4)
holds in a sufficiently large region of spacetime.

I No longer be able to transform the metric at will.
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Coordinate transforms II

I Still exists a (much more limited) family of transformations
which respects our choice of frame

I Consider the following gauge transformations

xµ −→ x′µ = xµ + ξµ(x), (7)

I where |∂ρξµ| are at most of the same order as |hµν |
I Substituting into the transformation law of the metric, Eq. (6)

and keeping only lowest-order terms

hµν(x) −→ h′µν(x′) = hµν(x)− (∂µξν + ∂νξµ). (8)
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Coordinate transforms III

I We can also perform global (x-independent) Lorentz
transformations,

xµ −→ x′µ = Λmνx
ν . (9)

I hµν transforms as

h′µν(x′) = Λµ
ρΛν

σhρσ(x). (10)

I hµν is a tensor under Lorentz transformations, as long as one
keeps |hµν | � 1
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Linearised Einstein’s Field Equations I

I To leading order in hµν , the Riemann tensor is

Rµνρσ =
1

2
(∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ) . (11)

I Linearized Riemann tensor is invariant under the gauge
transformations Eq. (8)
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Linearised Einstein’s Field Equations II

I It will be convenient to introduce

h̄µν = hµν −
1

2
ηµνh, (12)

I where h = ηµνhµν

I Note that h̄ ≡ ηµνhµν = h− 2h = −h so that

hµν = h̄µν −
1

2
ηµν h̄. (13)
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Linearised Einstein’s Field Equations III

I Using Eq. (11), and Eq. (13), the linearized Einstein equations
take the form

�h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πG

c4
Tµν , (14)

I where � ≡ ∂µ∂µ is the usual d’Alembertian.
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Linearised Einstein’s Field Equations IV
I Use residual gauge freedom Eq. (7) to further simplify
I h̄µν transforms as

h̄µν −→ h̄′µν = h̄µν − (∂µξν + ∂νξµ − ηµν∂ρξρ). (15)

I Impose the harmonic gauge

∂ν h̄µν = 0. (16)

I Last three terms in the LHS of Eq. (14) vanish

�h̄µν = −16πG

c4
Tµν . (17)

These are the linearized Einstein equations.
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Linearised Einstein’s Field Equations V

I Note that our ability to impose the harmonic gauge Eq. (16)
Eq. (17) implies that

∂νTµν = 0. (18)

I In the full theory one has ∇νTµν with ∇ν the covariant
derivative
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Vacuum Solutions I

I The general solution to the linearized Einstein equations at
(t,x) is

h̄µν(t,x) = −4
G

c2

∫
V

Tµν(t− |x− x′|/c,x′)
|x− x′|

d3x′. (19)

I Unlike the Newtonian potential, the value of h̄µν at a point x
arbitrarily far from the source S does not have instantaneous
knowledge of what happens at at V.

I There are time lags |x− x′|/c, these being the times needed for
a signal traveling at the speed of light to get from points x′

inside the source to the point x. Just like electromagnetism

gravity does not have instantaneous action at at distance after
all.
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Vacuum Solutions II

I Outside the source Tµν = 0, and Eq. (17) reduces to

�h̄µν = 0, (20)

I or written in full (
− 1

c2
∂

∂t2
+∇2

)
h̄µν = 0. (21)

This is just a wave equation, for waves traveling at the speed of
light
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Vacuum Solutions III

I Solutions can be written as superpositions of plane waves with
frequencies ω and wave vectors k,

Aµν cos(ωt− k · x), (22)

I where ω = c|k|, and Aµν has constant components.
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Newtonian Limit I

I For weak gravitational fields and small velocities,

|T 00| � |T i0| � |T ii| (23)

I which translates into

|h̄00| � |h̄i0| � |h̄ii| (24)

I In this regime,

T 00/c2 ' ρ (25)

I The equation Eq. (17) then reduces to

�h̄00 ' −16πG

c2
ρ. (26)
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Newtonian Limit II
I For sources moving with 3-velocity v such that v/c� 1,

(1/c2)∂2h̄00/∂t2 is of order (v/c)2 ∂2h̄00/∂(xi)2,
I Eq. (21) reduces to

c2∇2h̄00 ' −16πGρ. (27)

I With the identification

c2h̄00 = −4φ, (28)

I this becomes

∇2φ = 4πGρ, (29)

Poisson equation for the gravitational potential φ in Newton’s
theory of gravity.
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Newtonian Limit III

I The identification Eq. (28) is consistent with the motion of
point particles in the weak-field, low-velocity regime.

I In general relativity this motion is governed by the geodesic
equation,

d2xi

dτ2
+ Γiµν

dxµ

dτ

dxν

dτ
= 0. (30)

I Recall that gµν = ηµν + hµν with |hµν | � 1.
I For v/c� 1, the proper time τ will approximately coincide with

the coordinate time t associated with the background spacetime
ηµν .

I Moreover, dx0/dt ' c while dxi/dt = O(v).
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Newtonian Limit IV

I Hence, to leading order we need only retain the term in Eq. (30)
with µ = ν = 0

d2xi

dt2
' −c2Γi00

= c2
(

1

2
∂ih00 − ∂0h i

0

)
. (31)

I For a non-relativistic source, the time derivative is again of
higher order than the spatial derivatives

d2xi

dt2
=
c2

2
∂ih00. (32)

I This is an equation in terms of h00 rather than h̄00.
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Newtonian Limit V
I Since h̄00 dominates all other components of h̄µν ,

h = hµµ = −h̄µµ = h̄00, (33)

I From Eq. (13) and Eq. (28) we get

c2h00 = −2φ. (34)

I Substituting this into Eq. (32) we retrieve Newton’s second law
for a force with potential φ:

a = −∇φ, (35)

I with a being the acceleration 3-vector.

Retrieved both Newton’s equation for the gravitational potential
Eq. (29), and the Newtonian motion of a particle in such a

potential Eq. (35).
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Newtonian Limit VI

I The most general solution of Eq. (29) is

φ(t,x) = G

∫
V

ρ(t,x′)

|x− x′|
d3x′. (36)

I The fact that ρ(t,x′) in the integrand does not include a time
lag |x− x′|/c is due to the absence of a double time derivative
in Eq. (29)

I In Eq. (27) this term could be neglected because v/c� 1.
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Degrees of Freedom I

I A priori, h̄µν has 10 independent components
I Some are gauge artefact and can be eliminated by using

transformations of the form Eq. (15).
I Harmonic gauge Eq. (16) eliminates 4 components
I This gauge choice still allows for residual freedom.
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Degrees of Freedom II

I Condition Eq. (16) is not spoiled by a transformation Eq. (15)

�ξµ = 0. (37)

I Note that if �ξµ = 0 then also �ξµν = 0, where

ξµν = ∂µξν + ∂νξµ − ηµν∂ρξρ, (38)

I because � commutes with ∂µ.

We can use 4 functions ξµ(x) to eliminate 4 more components of
h̄µν without spoiling either the harmonic gauge or the simple

form of the linearized Einstein equations (17).
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TT-Gauge I

I We can choose ξ0(x) such that the trace

h̄ = 0 (39)

I such that

h̄µν = hµν (40)

I Furthermore, we can choose the three functions ξi(x), i = 1, 2, 3
so that

h0µ(x) = 0. (41)

I From Eq. (40) the harmonic gauge condition with µ = 0 then
becomes

∂0h00 + ∂ih0i = 0. (42)
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TT-Gauge II

I Since we just set h0i = 0, this reduces to

∂0h00 = 0, (43)

I so that h00 does not depend on time.
I A time-independent contribution to h00 corresponds to the

static part of the gravitational interaction, i.e., to the
Newtonian potential of the source arising from its total mass
without contributions due to motion.

I The gravitational wave is the time-dependent part, and since
this is our focus here we will just set h00 = 0.

I Strictly speaking we should retain the Newtonian contribution
h00, but it will have no effect on gravitational wave detection
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TT-Gauge III

I The spatial part of the harmonic gauge (with µ = i = 1, 2, 3) is
then

∂jhij = 0, (44)

I and the condition h = 0 becomes

hii = 0 (45)

I In summary, we have

h0µ = 0 (46)

hii = 0 (47)

∂jhij = 0. (48)
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TT-Gauge IV

I Used up all of our gauge freedom and are left with two degrees
of freedom.

I The gauge in which the conditions Eq. (48) hold is called the
transverse-traceless gauge, or TT gauge.

I The metric perturbation in the TT gauge is denoted hTT
ij .
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TT-Gauge V
I Eq. (21) has plane wave solutions of the form

hTT
ij = eij(k) cos(kµx

µ), (49)

I with kµ = (ω/c,k), and ω = c|k|.
I The tensor eij(k) is called the polarization tensor.
I For a single plane wave with wave vector k, the condition
∂jhij = 0 becomes

kjhTT
ij = 0 njhTT

ij = 0 (50)

I where n̂ = k/|k| is the unit vector in the direction of motion.

Non-zero components of hTij are in the plane that is transverse
to n̂.
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TT-Gauge VI

I Suppose we choose the z axis to lie in the direction of n̂.
I Taking into account symmetry, transversality and tracelessness

of hTT
ij , we get

hTT
ij =

 h+ h× 0
h× −h+ 0
0 0 0


ij

cos [ω(t− z/c)] (51)

I In terms of the line element ds2, we have

ds2 =− c2dt2 + dz2 + [1 + h+ cos[ω(t− z/c)]] dx2

+ [1− h+ cos[ω(t− z/c)]] dy2 + 2h× cos[ω(t− z/c)] dxdy.
(52)
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Geodesic Deviation I

What is the effect of the perturbation h on matter?

I Consider the relative motion of two nearby test particles in free
fall.

I A free-falling test particle obeys the geodesic equation,

d2xµ

dτ2
+ Γµνρ(x)

dxν

dτ

dxρ

dτ
= 0. (53)

I where τ is proper time.
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Geodesic Deviation II

I Now consider two nearby free-falling particles, at xµ(τ) and
xµ(τ) + ζµ.

I The first particle is subject to Eq. (53) while the second one
obeys

d2(xµ + ζµ)

dτ2
+ Γµνρ(x+ ζ)

d(xν + ζν)

dτ

d(xρ + ζρ)

dτ
= 0. (54)

I Taking the difference between Eq. (54) and Eq. (53)
I Expanding to first order in ζµ

d2ζµ

dτ2
+ 2Γµνρ

dxν

dτ

dζρ

dτ
+ ζσ∂σΓµνρ(x)

dxν

dτ

dxρ

dτ
= 0. (55)
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Geodesic Deviation III
I Introduce the covariant derivative of a vector field V µ along the

curve xµ(τ):

DV µ

Dτ
=
dV µ

dτ
+ ΓµνρV

ν dx
ρ

dτ
. (56)

I Using this and the definition of the Riemann tensor, recast
Eq. (55) as

D2ζµ

Dτ2
= −Rµνρσζρ

dxν

dτ

dxσ

dτ
. (57)

This is the equation of geodesic deviation, which expresses the
relative motion of nearby particles in terms of a tidal force

determined by the Riemann tensor.
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Geodesic Deviation IV
I Given a point P along a geodesic, there always exists a

coordinate transformation that will make the Christoffel
symbols vanish at P :

Γµνρ(P ) = 0. (58)

I This is just the Local Lorentz Frame
I Furthermore, let us consider particles which move

non-relativistically,
I i.e. spatial motion dxi/dτ is negligible compared to dx0/dτ .
I Eq. (55) becomes

d2ζi

dτ2
+ ζσ∂σΓi00

(
dx0

dτ

)2

= 0. (59)
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Geodesic Deviation V

I Quantity ∂σΓi00 is evaluated at the point P , i.e., at xi = 0,
I Metric is of the form

gµν = ηµν +O(xixj) (60)

I Therefore

ζσ∂σΓi00 = ζj∂jΓ
i
00 (61)

I Since at P both Γµνρ = 0 and ∂0Γi0j = 0,
I One has

Ri0j0 = ∂jΓ
i
00 − ∂0Γi0j = ∂jΓ

i
00 (62)
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Geodesic Deviation VI

I Finally

d2ζi

dτ2
= −Ri0j0ζj

(
dx0

dτ

)2

. (63)

I If the test masses are moving non-relativistically then
dx0/dτ ' c and τ = t

I We finally arrive at

ζ̈i = −c2Ri0j0ζj , (64)

I where a dot denotes derivation with respect to t.
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Riemann Tensor

I In the linearized theory, Riemann tensor is invariant
I Evaluating (11) in the TT frame we get

Ri0j0 = Ri0j0 = − 1

c2
ḧTT
ij . (65)

I Hence, at the point P , the geodesic deviation equation reduces
to

ζ̈i =
1

2
ḧTT
ij ζ

j . (66)
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Waves I

I Monochromatic gravitational wave propagating in the
z-direction

I Study its effect on test particles in the (x, y) plane.
I Focus on the + polarization.
I At z = 0 and choosing the origin of time such that hTT

ij = 0 at
t = 0,

hTT
ij = h+ sin(ωt)

 1 0 0
0 −1 0
0 0 0


ij

. (67)
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Waves II

I Consider a point particle in the (x, y) plane

ζi = (x0 + δx(t), y0 + δy(t), 0) (68)

I where (x0, y0) is the unperturbed position and δx(t), δy(t) the
displacement caused by the gravitational wave.

I From Eq. (66) and assuming that (x0, y0) and (0, 0) are on
“nearby" geodesics,

δẍ = −h+
2

(x0 + δx)ω2 sin(ωt),

δÿ = +
h+
2

(y0 + δy)ω2 sin(ωt). (69)
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Waves III

I Assume small displacements compared with the unperturbed
position, δx� x0 and δy � y0

δẍ = −h+
2
x0 ω

2 sin(ωt),

δÿ = +
h+
2
y0 ω

2 sin(ωt), (70)

I which integrates to

δx(t) =
h+
2
x0 ω

2 sin(ωt),

δy(t) = −h+
2
y0 ω

2 sin(ωt). (71)
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Waves IV

I Completely analogously, for the cross polarization

δx(t) =
h×
2
y0 ω

2 sin(ωt),

δy(t) =
h×
2
x0 ω

2 sin(ωt). (72)
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Waves V

Deformation of a ring of test particles

h+

ωt = 0

h×

ωt = π/2 ωt = π ωt = 3π/2 ωt = 2π

The deformation of a ring of test particles due to the + and × polarizations.
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Higher Order Einstein’s Field Equations I
I Linearized Einstein equations in vacuum are

R(1)
µν −

1

2
ηµνR

(1) = 0, (73)

I Where R(1)
µν is the Ricci tensor up to linear terms in the small

perturbation hµν around the flat background ηµν
I Computed from the linearized Riemann tensor Eq. (11)
I Schematically, the linearized Einstein equations can be written

as

G(1)
µν [hρσ] = 0, (74)

I where G(1)
µν is the Einstein tensor to first order in hµν and its

derivatives.
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Higher Order Einstein’s Field Equations II

I Given a solution hµν of the linearized Einstein equations, the
metric gµν = ηµν + hµν will generally not be a solution to the
full Einstein equations.

I Does not even solve second order Einstein equations
I Indeed, expanding the Einstein tensor as

Gµν [hρσ] = G(1)
µν [hρσ] +G(2)

µν [hρσ] + . . . (75)

I where G(2)
µν collects all second order terms

I Typically, G(2)
µν [hρσ] 6= 0.
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Higher Order Einstein’s Field Equations III

I The second order Einstein equations are

G(1)
µν [hρσ] +G(2)

µν [hρσ] = 0. (76)

I Suppose a solution hµν of the linearized equations Eq. (74)
I If we have

G(2)
µν [hρσ] 6= 0 (77)

I Second order equation Eq. (76) does not hold.
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Higher Order Einstein’s Field Equations IV

I Correct the second order equation Eq. (76) by adding smaller
correction h(2)µν

I These have to satisfy

G(2)
µν [hρσ] +G(1)

µν [h(2)ρσ ] = 0. (78)

I We can write this in the form

G(1)
µν [h(2)µν ] =

8πG

c4
tµν (79)

I with the identification that

tµν = − c4

8πG
G(2)
µν [hρσ]. (80)
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Higher Order Einstein’s Field Equations V

I The corrected Einstein equations then become

G(1)
µν [hρσ + h(2)ρσ ] =

8πG

c4
tµν , (81)

I where we have

tµν = − c4

8πG
G(2)
µν [hρσ]. (82)

I To second order, hµν causes the same correction to the
spacetime metric as would be produced by additional ordinary
matter with stress-energy tensor tµν .

I Note that tµν is symmetric, and if hµν satisfies the linearized
Einstein equations then ∂µtµν = 0, hence it is conserved.

Tjonnie Li Intensive course in Physics: Gravitational Waves 46



Linearised Gravity Effects of GWs Energy & Momentum Generation of GWs

Spatial Averaging I

I It is tempting to regard tµν as the stress-energy tensor of the
gravitational field itself, valid to second order in deviation from
flatness.

I However, tµν is not gauge invariant
I Changes under the transformations Eq. (8).

In general relativity there is no local notion of the energy
density of the gravitational field.
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Spatial Averaging II

I Evaluating tµν by averaging it over a small spatial volume
surrounding that point

I Obtain a gauge-invariant quantity.

tµν = − c4

8πG

〈
R(2)
µν −

1

2
ηµνR

(2)

〉
, (83)

I where 〈. . .〉 denotes the average over a bounded spatial volume
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Spatial Averaging III
I Second order contributions to the Ricci tensor are

R(2)
µν =

1

2

[
1

2
∂µhρσ∂νh

ρσ + hρσ∂µ∂νhρσ − hρσ∂ν∂σhρµ − hρσ∂µ∂σhρν

hρσ∂ρ∂σhµν + ∂σhρν∂σhρµ − ∂σhρν∂ρhσµ − ∂σhρσ∂νhρµ

+∂σh
ρσ∂ρhµν − ∂σhρσ∂µhρν −

1

2
∂ρh∂ρhµν +

1

2
∂ρh∂νhρµ

+
1

2
∂ρh∂µhρν

]
. (84)

I Due to the averaging in Eq. (83), the expression for tµν will end
up being quite simple.

I Discard boundary terms since we assume an integration volume
with a boundary

I Time dependence of hµν will be through a retarded time
I But then ∂0hµν = −∂zhµν .
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Stress-energy Psuedo Tensor I

I Make all terms in Eq. (84) except for first two vanish using
I Gauge condition ∂µhµν = 0
I Tracelessness condition h = 0
I Field equations �hµν = 0

I Remaining terms can be combined to get

〈R(2)
µν 〉 = −1

4
〈∂µhρσ∂νhρσ〉. (85)

I Thus, we arrive at

tµν =
c4

32πG
〈∂µhρσ∂νhρσ〉. (86)

Tjonnie Li Intensive course in Physics: Gravitational Waves 50



Linearised Gravity Effects of GWs Energy & Momentum Generation of GWs

Stress-energy Psuedo Tensor II

I The change in tµν under the gauge transformations Eq. (8)

δtµν =
c4

32πG
〈∂µhρσ∂ν(δhρσ) + ∂µ(δhρσ)∂νh

ρσ〉

=
c4

32πG
〈∂µhρσ∂ν(∂ρξσ + ∂σξρ) + (µ↔ ν)〉

=
c4

16πG
〈∂µhρσ∂ν∂ρξσ + (µ↔ ν)〉 . (87)

I Inside the average 〈. . .〉 we can
I integrate ∂ρ by parts
I use the gauge condition ∂ρhρσ = 0.

I Therefore δtµν = 0, and tµν is gauge invariant.
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Stress-energy Psuedo Tensor III

I Hence it only depends on the physical content of the spacetime
perturbation hµν

I In that gauge, the energy gravitational energy density is

t00 =
c2

32πG
〈ḣTT
ij ḣ

TT
ij 〉, (88)

where the dot denotes derivation w.r.t. time; note that
∂0 = (1/c)∂t.

I In terms of the two gravitational wave polarizations

t00 =
c2

16πG
〈ḣ2+ + ḣ2×〉. (89)
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Energy of Gravitational Waves I

I Gravitational energy inside volume V is

EV =

∫
V
d3x t00. (90)

I The gravitational energy going through surface S per unit of
time is then given by

dEGW

dt
= −

∫
V
d3x ∂tt

00, (91)

I Where the minus sign indicates that we are interested in the
energy leaving the surface.
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Energy of Gravitational Waves II

I Using conservation of gravitational stress-energy ∂µtµν = 0

1

c

dEGW

dt
=

∫
V
d3x ∂it

0i

=

∫
S
dAnit

0i, (92)

I where dA is the infinitesimal surface element and n̂ the unit
normal to S.

I If S is a sphere then
I Unit vector n̂ = r̂
I dA = r2dΩ, with r the sphere’s radius
I dΩ = sin(θ)dθdφ in the usual angular coordinates (θ, φ).
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Energy of Gravitational Waves III
I One then has

dEGW

dt
= cr2

∫
dΩ t0r, (93)

t0r =
c4

32πG

〈
∂0ḣTT

ij ∂
rhTT
ij

〉
. (94)

I If r is sufficiently large, a gravitational wave propagating
radially outward has the form

hTT
ij =

1

r
fij(t− r/c). (95)

I The derivative with respect to r then gives

∂

∂r
hTT
ij = − 1

r2
fij(t− r/c) +

1

r

∂

∂r
fij(t− r/c). (96)
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Energy of Gravitational Waves IV

I Note that

∂

∂r
fij(t− r/c) = −1

c

∂

∂t
fij(t− r/c), (97)

∂

∂r
hTT
ij = −∂0hTT

ij +O
(

1

r2

)
= +∂0hTT

ij +O
(

1

r2

)
. (98)

I Hence, at large distances one has t0r = t00, and

dEGW

dt
= cr2

∫
dΩ t00. (99)
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Energy of Gravitational Waves V

I Using expression Eq. (88) for the gravitational energy density,

dEGW

dt
=

c3r2

32πG

∫
dΩ 〈ḣTT

ij ḣ
TT
ij 〉, (100)

I or in terms of the two polarizations,

dEGW

dt
=

c3r2

16πG

∫
dΩ 〈ḣ2+ + ḣ×〉. (101)

Thus, gravitational waves carry away energy, which they can
deposit into physical systems.
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I ravitational waves also carry momentum.
I Given a volume V , the gravitational momentum inside it is

P k =
1

c

∫
V
d3x t0k. (102)

I Outgoing momentum per unit time is

∂P kGW

dt
= −

∫
V
d3x ∂0t

0k

= r2
∫
S
dΩt0k. (103)

I Using Eq. (86) we arrive at

∂P kGW

dt
= − c3r2

32πG

∫
S
dΩ 〈ḣTT

ij ∂
khTT

ij 〉. (104)
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Green’s functions I

I The field equations of linearized gravity are Eq. (17).

�h̄µν = −16πG

c4
Tµν , (105)

I Since these are linear equations, they can be solved using
Green’s functions.

I The appropriate Green’s function here is the one that solves the
equation

�xG(x− x′) = δ4(x− x′), (106)

I where x, x′ are any two spacetime points
I derivatives in the LHS are with respect to the components of
x = (ct,x).
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Green’s functions II

I For a given Tµν , the solution to Eq. (105) is

h̄µν(x) = −16πG

c4

∫
d4x′G(x− x′)Tµν . (107)

I Choosing boundary conditions such that there is no incoming
radiation from infinity retarded Green’s function

G(x− x′) = − 1

4π|x− x′|
δ(x0ret − x′0), (108)

I Where x′0 = ct′, x0ret = ctret

I Retarded time tret is given by

tret = t− |x− x′|
c

. (109)
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Green’s functions III

I Eq. (107) then becomes

h̄µν(t,x) =
4G

c4

∫
d3x′

1

|x− x′|
Tµν

(
t− |x− x′|

c
,x′
)
. (110)
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Projection Operator I

I Look for solution in the TT-gauge.
I Let n̂ be the direction of propagation of a gravitational wave.
I Then the following operator removes the component of any

spatial vector along the direction n̂:

Pij ≡ δij − ninj . (111)

I Given a spatial vector vi, the vector wi = Pijv
j is transverse:

n̂ ·w = niPijv
j = 0. (112)

I Pij is a projector:

PikPkj = Pij . (113)
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Projection Operator II
I Using Pij , we now construct

Λij,kl(n̂) = PikPjl −
1

2
PijPkl. (114)

I This is also a projector, in the sense that

Λij,klΛkl,mn = Λij,mn. (115)

I It is transverse in all indices: niΛij,kl = 0, njΛij,kl = 0

I It is also traceless with respect to the first and last index pairs:

Λii,kl = Λij,kk = 0. (116)

I Finally, it is symmetric under the interchange (i, j)↔ (k, l):

Λij,kl = Λkl,ij . (117)
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Projection Operator III

I The explicit expression for Λij,kl is:

Λij,kl(n̂) = δikδjl −
1

2
δijδkl − njnlδik − ninkδjl

+
1

2
nknlδij +

1

2
ninjδkl +

1

2
ninjnknl. (118)

I The projection is equivalent to performing a gauge
transformation that brings hµν into the TT gauge

hTT
ij = Λij,klhkl (119)
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Multipole Expansion I

I Outside the source, the solutions to Eq. (105) in the TT-gauge
take the form

hTT
ij (t,x) =

4G

c4
Λij,kl(n̂)

∫
d3x′

1

|x− x′|
Tkl

(
t− |x− x′|

c
,x′
)
.

(120)

I Study behavior of hTT
ij far from the source, at a distance r that

is much larger than the source’s size, d.
I In that case we can expand

|x− x′| = r − x′ · n̂ +O
(
d2

r

)
. (121)
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Multipole Expansion II
I To very good approximation, Eq. (120) can be written as

hTT
ij (t,x) =

4G

c4
Λij,kl(n̂)

∫
d3x′

1

|x− x′|
Tkl

(
t− r

c
+

x′ · n̂
c

,x′
)
.

(122)

I To see how further simplifications can be made, it is useful to
Fourier-expand the stress tensor:

Tkl

(
t− |x− x′|

c
,x′
)

=

∫
d4k

(2π)4
T̃kl(ω,k)e−iω(t−r/c+x′·n̂)+ik·x′

.

(123)

I For a typical source, Tij(ω,k) will only have power up to some
maximum frequency ωs.

I If the source is non-relativistic then ωsd� c.
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Multipole Expansion III

I In addition we have |x′| . d.
I Hence the frequencies ω where hTT

µν receives its main
contributions are such that

ω

c
x′ · n̂ . ωsd

c
� 1. (124)

I Hence, in the exponent of Eq. (123) we can use ωx′ · n̂/c as an
expansion parameter:

e−iω(t−r/c+x′·n̂/c)+ik·x′
=e−iω(t−r/c)

[
1− iω

c
x′ini

+
1

2

(
−iω

c

)2
x′ix′jninj + . . .

]
(125)
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Multipole Expansion IV
I In the time domain, this is equivalent to expanding

Tkl

(
t− r

c
+

x′ · n̂
c

,x′
)

= Tkl(t− r/c,x′) +
x′ini

c
∂0Tkl

+
1

2c2
x′ix′jninj∂20Tkl + . . . , (126)

I where the derivatives in the RHS are evaluated at (t− r/c,x′).
I Now introduce the multipole moments of the stress tensor Tij :

Sij =

∫
d3xT ij(t,x),

Sij,k =

∫
d3xT ij(t,x)xk,

Sij,kl =

∫
d3xT ij(t,x)xkxl,

. . . (127)
Tjonnie Li Intensive course in Physics: Gravitational Waves 68



Linearised Gravity Effects of GWs Energy & Momentum Generation of GWs

Multipole Expansion V

I Then substituting the expansion Eq. (126) into Eq. (122)

hTT
ij =

1

r

4G

c4
Λij,kl(n̂)

[
Skl +

1

c
nmṠ

kl,m +
1

2c2
nmnpS̈

kl,mp + . . .

]
ret

,

(128)

I where [. . .]ret indicates that the expression in brackets is being
evaluated at the retarded time t− r/c.

I Expansion in v/c, where v is a characteristic velocity.
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Multipole Expansion VI

I Compared to Skl, the moment Skl,m has an additional factor
xm ∼ O(d)

I Each time derivative brings in a factor O(ωs)

I Combined with the 1/c this gives a factor O(ωsd/c).
I Defining v ≡ ωsd, this means that the term (1/c)nmṠ

kl,m is a
correction of O(v/c) to the term Skl.

I Similary the term (1/2c2)nmnpS̈
kl,mp is a correction of

O(v2/c2), and so on
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Mass and Momenthum Multipoles I

I The expansion (128) depends on the moments of the stresses Tij
I Instead have an expansion in moments of

I mass density (1/c2)T 00

I momentum density (1/c)T 0i.
I The mass moments are defined as

M =
1

c2

∫
d3xT 00(t,x),

M i =
1

c2

∫
d3xT 00(t,x)xi,

M ij =
1

c2

∫
d3xT 00(t,x)xixj ,

M ijk =
1

c2

∫
d3xT 00(t,x)xixjxk,

. . . (129)
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Mass and Momenthum Multipoles II

I while the momentum density moments are given by

P i =
1

c

∫
d3xT 0i(t,x),

P ij =
1

c

∫
d3xT 0i(t,x)xj ,

P ijk =
1

c

∫
d3xT 0i(t,x)xjxk,

. . . (130)
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Mass and Momenthum Multipoles III

I Express the stress moments Eq. (127) as combinations of mass
and momentum density moments.

Sij =

∫
d3xT ij

=

∫
d3x δikδ

j
l T

kl

=

∫
d3x (∂kx

i)(∂lx
j)T kl

= −
∫
d3xxi(∂lx

j) ∂kT
kl

=

∫
d3xxi(∂lx

j) ∂0T
0l. (131)
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Mass and Momenthum Multipoles IV

I Similarly, we can write

Sij = −
∫
d3xxixj∂20T

00 −
∫
d3xδilx

j∂0T
0l

=

∫
d3xxixj∂20T

00 +

∫
d3xj∂kT

ki

=
1

c2

∫
d3xxixj T̈ 00 −

∫
d3xT ij

= M̈ ij − Sij (132)

Sij =
1

2
M̈ ij . (133)
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Mass and Momenthum Multipoles V
I To leading order in v/c, the metric perturbation in the

TT-gauge takes the form[
hTij(t,x)

]
quad

=
1

r

2G

c2
Λij,kl(n̂)M̈kl(t− r/c). (134)

I This is the mass quadrupole radiation.
I Note that Λij,kl contracted with M̈kl makes the latter traceless,
I In Eq. (134) we can replace Mkl by

Qij ≡M ij − 1

3
δijMkk. (135)

I The tensor Qij related to the quadrupole tensor from
Newtonian theory

Qij =

∫
d3x ρ(t,x)

(
xixj − 1

3
r2δij

)
. (136)

Tjonnie Li Intensive course in Physics: Gravitational Waves 75



Linearised Gravity Effects of GWs Energy & Momentum Generation of GWs

Mass and Momenthum Multipoles VI

I In this approximation, we find

[
hTij(t,x)

]
quad

=
1

r

2G

c4
Q̈TT
ij (t− r/c), (137)

I where QTT
ij is the transverse part of the (already traceless)

tensor Qij :

QTT
ij = Λij,kl(n)Qij . (138)
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Conservation of Mass and Momentum

I There is no monopole or dipole gravitational radiation.
I These contributions would have depended on time derivatives of

the mass monopole M and the momentum dipole P i.

Ṁ =
1

c

∫
d3x ∂0T

00

= −1

c

∫
d3x ∂iT

0i

= 0, (139)

I Can show that Ṗ i = 0.

Conservation of total mass and momentum is responsible for the
absence of monopole or dipole radiation.
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Quadrupole Radiation I

I Focus the quadrupole expression Eq. (137)
I What radiation is emitted depends on the direction n̂.
I However, without loss of generality we can set n̂ = ẑ,
I The projector Pij = δij − ninj becomes

P =

 1 0 0
0 1 0
0 0 0

 (140)

I For any 3× 3 matrix Aij ,

Λij,klAkl =

[
PikPjl −

1

2
PijPkl

]
Akl

= (PAP )ij −
1

2
PijTr(PA). (141)
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Quadrupole Radiation II
I Using Eq. (140) we get

PAP =

 A11 A12 0
A21 A22 0
0 0 0

 , (142)

I while Tr(PA) = A11 +A22.
I Therefore

Λij,klAkl =

 A11 A12 0
A21 A22 0
0 0 0


ij

− A11 +A22

2

 1 0 0
0 1 0
0 0 0


ij

=

 (A11 −A22)/2 A12 0
A21 −(A11 −A22)/2 0
0 0 0


ij

. (143)
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Quadrupole Radiation III

I Thus, when n̂ = ẑ,

Λij,klM̈kl =

 (M̈11 − M̈22)/2 M̈12 0

M̈21 −(M̈11 − m̈22)/2 0
0 0


ij

.

(144)

I We arrive at

hTT
ij =

 h+ h× 0
h× −h+ 0
0 0 0


ij

, (145)
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Quadrupole Radiation IV

I we can immediately read off the two gravitational-wave
polarizations:

h+ =
1

r

G

c4
(M̈11 − M̈22),

h× =
2

r

G

c4
M̈12, (146)

I where in each case the RHS is computed at the retarded time
t− r/c.
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