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Dual Spaces Tensors Derivatives Curvature GR

Vectors and Dual Spaces I

I Consider a position vector r(u1, u2, u3) of P
I where u1, u2, u3 are the coordinates of the vector in some

curvilinear coordinate system (e.g. polar coordinates).

I Define the vector e1 = ∂r
∂u1

that is tangent to the u1 curve at P.
I In general, we can write

ei =
∂r

∂ui
(1)

ei form a basis for the curvilinear coordinate system.
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Vectors and Dual Spaces II

I An infinitesimal vector displacement in a general coordinate can
be written as

dr =
∂r

∂u1
du1 +

∂r

∂u2
du2 +

∂r

∂u3
du3

= du1e1 + du2e2 + du3e3, (2)

I where dui are the infinitesimal displacements along the ui curves.
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Vectors and Dual Spaces III

I Consider the surface u1 = c1 where c1 is some constant.
I The vector ε1 = ∇u1 is a vector normal to the u1 = c1 plane.
I In general, one can write

εi = ∇ui (3)

These also form a set of basis vectors in this curvilinear
coordinate system.
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Vectors and Dual Spaces IV

I A vector a can therefore be written as

a = α1e1 + α2e2 + α3e3

= β1ε1 + β2ε2 + β3ε3, (4)

I α1, α2, α3: contravariant components of a
I β1, β2, β3: covariant components of a
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Einstein Notation I

I Useful to denote the vector εi by ei.
I Position of the index (super- or subscript) distinguishes the

different sets of dual vectors.
I Write the vector a in either basis sets as

a = a1e1 + a2e2 + a3e3

= a1e
1 + a2e

2 + a3e
3, (5)

I ai: contravariant components of a
I ai: covariant components of a
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Einstein Notation II

I Define the Einstein notation
any index that appears exactly twice, once as a
subscript and once as a superscript, in any term of an
expression is understood to be summed over all the
values that an index in that position can take (unless
explicitly stated otherwise).

I Example: in a three-dimensional space we can write.

aibi =

3∑
i=1

aibi

= a1b1 + a2b2 + a3b3 (6)
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General Coordinate Transform I

I Consider general coordinate transformation ui to u′i

u′i = u′i
(
ui
)
. (7)

I Assume that this coordinate transformation can be inverted

ui = ui
(
u′i
)
. (8)

I The two sets of basis vectors in the new coordinate system are

e′i =
∂r

∂u′i
and e′i = ∇u′i. (9)
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General Coordinate Transform II

I Use the chain rule to perform a coordinate transform

ei =
∂r

∂ui

=
∂u′j

∂ui
∂r

∂u′j

=
∂u′j

∂ui
e′j

I Similarly, we can rewrite the second set of basis vectors as

ej =
∂uj

∂u′i
e′i (10)
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First Order Tensors I

I Recall from Eq. (4): write a vector a either in the covariant or
the contravariant basis sets.

I In the contravariant form, the vector a written as

a = a′ie′i

= ajej

= aj
∂u′i

∂uj
e′j . (11)

I Contravariant components of a vector a transform as

a′i = aj
∂u′i

∂uj
. (12)
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First Order Tensors II
I Similarly, in the covariant form we can write

a = a′ie
′i

= aje
j

= aj
∂uj

∂u′i
e′i. (13)

I Components of a covariant vector transform as

a′i = aj
∂uj

∂u′i
. (14)

ai are considered the contravariant components of a first-order
tensor if they transform as Eq. (12). Similarly, aj are covariant

components of a vector if it transforms as Eq. (14).
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Zeroth Order Tensors

What about quantities that are unchanged by a general
coordinate transformation?

I Example: length of a vector given by r2 = x2 + y2 + z2.
I Refer to these quantities as scalars or zeroth-order tensors.

Scalars play a crucial role in general relativity as observables
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Second-order and higher-order tensors

I Generalise the discussion for first-order to tensors of higher rank.
I Example: components of a second-order tensor transform as

T ′ij =
∂u′i

∂uk
∂u′j

∂ul
T kl, (15)

T ′i
j =

∂u′i

∂uk
∂ul

∂u′j
T kl , (16)

T ′
ij =

∂uk

∂u′i
∂ul

∂u′j
Tkl. (17)
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Metric Tensor I

Any curvilinear coordinate system is completely described at
each point by a symmetric second-order tensor g called the

metric tensor.

I Covariant and contravariant components of the metric tensor
are given by

gij = ei · ej (18)

gij = ei · ej , (19)

I Mixed components of the metric tensor is the Kronecker delta

gij = ei · ej
= δij , (20)
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Metric Tensor II
I Suppose an infinitesimal vector displacement dr = duiei.
I Write the square of the infinitesimal arc length ds2 in terms of

the metric tensor

ds2 = dr · dr
= duiei · dujej
= gijdu

iduj . (21)

I Can also show that the volume element dV is given by

dV =
√
gdu1du2du3, (22)

I where g = det gij
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Metric Tensor III
I Scalar product between two vectors in terms of metric tensor.

a · b = aiei · bjej = aibjgij , (23)

a · b = aie
i · bjej = aibjg

ij , (24)

a · b = aiei · bjej = aibjδji = aibi (25)

a · b = aie
i · bjej = aibjδ

i
j = aib

i (26)

I By comparing Eqs. (23)–(26)

gijb
j = bi and gijbj = bi. (27)

I Metric tensor can be used to raise and lower indices.
I Also works for higher-order tensors

Tij = gikT
k
j = gikgjlT

kl. (28)
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Derivatives of Vectors I

I In general coordinate systems, the basis vectors depend on the
coordinates themselves.

I When we differentiate tensors, we must also differentiate the
basis vectors.

I Consider the partial derivative ∂ei
∂uj

: itself a vector!
I Express in terms of the basis vectors

∂ei
∂uj

= Γkijek. (29)

I Rearrange Eq. (29) to get

Γkij = ek · ∂ei
∂uj

(30)
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Derivatives of Vectors II

I Similarly, we can show that the derivative of the contravariant
basis vectors are given by

∂ei

∂uj
= −Γikje

k. (31)

I In Cartesian coordinates, basis vectors remain constant
throughout the coordinate system.
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Derivatives of Vectors III
I Christoffel symbol is symmetric under the interchange of the i

and j subscript, because

∂ej
∂uj

=
∂2r

∂uj∂ui

=
∂2r

∂ui∂uj

=
∂ej
∂ui

. (32)

I Express components of Chirstoffel symbol in terms of the metric
tensor

Γmij =
1

2
gmk

(
∂gjk
∂ui

+
∂gki
∂uj

− ∂gij
∂uk

)
. (33)
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Covariant derivative I

In general coordinate systems, differentiation of components of a
tensor with respect to the coordinates does not, in general,

result in a tensor (except for zeroth-order tensors).

I Use the Christoffel symbol to introduce the covariant derivative
that when acted on components of a tensor does yield
components of another tensor.
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Covariant derivative II
I Consider the derivative of a vector v in the contravariant form

∂v

∂uj
=

∂

∂uj
(
viei

)
=
∂vi

∂uj
ei + vi

∂ei
∂uj

=
∂vi

∂uj
ei + viΓkijek

=
∂vi

∂uj
ei + vkΓikjei

=

(
∂vi

∂uj
+ vkΓikj

)
ei, (34)

I where we have changed the dummy indices i and k.
I The terms in parentheses is called the covariant derivative.
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Covariant derivative III
I A short-hand notation for the covariant derivative is given by

vi;j ≡
∂vi

∂uj
+ vkΓikj . (35)

I The covariant derivative of the covariant components can be
shown to be

vi;j =
∂vi
∂uj
− vkΓkij . (36)

I Introduce a similar notation for the partial derivative.

vi,j ≡
∂vi

∂uj
. (37)

I Follow a procedure similar to Eq. (34) to find the covariant
derivative of higher order tensors.

Tjonnie Li Intensive course in Physics: Gravitational Waves 22



Dual Spaces Tensors Derivatives Curvature GR

Covariant derivative IV

I Example, the covariant derivative of a second-order tensor can
be written as

T ij ;k = T ij ,k + ΓilkT
lj + Γj lkT

il, (38)

T ij;k = T ij,k + ΓilkT
l
j − ΓljkT

i
l , (39)

Tij;k = Tij,k − ΓlikTlj − ΓljkTil. (40)

I Higher order tensors: For each contravariant index use a
Christoffel symbol with a plus sign, and for a covariant index we
use a Christoffel symbol with a minus sign.
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Absolute derivative I

I Consider a derivative of a vector v(t) along some curve
parametrised by t.

dv

dt
=
dvi

dt
ei + vi

dei
dt

=
dvi

dt
ei + vi

∂ei
∂uk

duk

dt

=
dvi

dt
ei + Γj ikv

idu
k

dt
ej

=

(
dvj

dt
+ Γijk

duk

dt

)
ej

=

(
vj ;k

duk

dt

)
ej , (41)
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Absolute derivative II

I The term inside the parenthesis is called the absolute derivative

δvi

δt
≡ vi;k

duk

dt
, (42)

I For covariant components, we have

δvi
δt
≡ vi;k

duk

dt
. (43)
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Absolute derivative III

I For second-order tensors, we can arrive at similar expressions

δT ij

δt
≡ T ij ;k

duk

dt
, (44)

δT ij
δt
≡ T ij;k

duk

dt
, (45)

δTij
δt
≡ Tij ;k

duk

dt
. (46)

I These expression can be generalised to tensors of arbitrary
orders.

Tjonnie Li Intensive course in Physics: Gravitational Waves 26



Dual Spaces Tensors Derivatives Curvature GR

Geodesics I

A geodesic is a generalization of the notion of a straight line to
curved spaces and has two equivalent properties

1. the curve of the shortest length between two points,

2. the curve whose tangent vectors remain parallel when
transported along the curve.
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Geodesics II

I Consider a curve r(s), which is parameterised by the arc length
s starting from some point on the curve.

I The tangent vector is given by t = dr/ds.
I Find the geodesic by the property that the tangent vector

remains parallel moving along the curve,

dt

ds
= 0. (47)
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Geodesics III
I Tangent vector t is given by

t = tiei (48)

I The geodesic can be found by evaluating the absolute derivative

dt

ds
= ti;k

duk

ds
ei

=

(
dti

ds
+ Γijkt

j

)
duk

ds
ei

= 0. (49)

I Since tj = duj/ds, we can find an alternative expression for the
geodesic

d2ui

ds2
+ Γijk

duj

ds

duk

ds
= 0 (50)
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Parallel Transport I

Consider parallel transporting a vector along a closed loop.
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Parallel Transport II
Measure the intrinsic curvature by parallel transportation along
a closed loop
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Riemann Curvature Tensor I

I Recall: parallel transport along uk is given by ti;k.
I Go around an infinitesimal square in the uj and uk direction.
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Riemann Curvature Tensor II

I Change in a vector v given by commutator of two covariant
derivatives

vi;[j,k] = vi;jk − vi;kj
≡ Rlijkvl, (51)

I where Rlijk is the so-called Riemann tensor.

I The Riemann tensor provides a measure of the curvature.
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Riemann Curvature Tensor III

I Can be rewritten as

Rβαµν =
(

Γβαν,µ − Γβαµ,ν + ΓγανΓβγµ − ΓγαµΓβγν

)
. (52)

I Riemann tensor has the following properties

Rµναβ = −Rµνβα,
Rµναβ = −Rνµαβ ,
Rµναβ = −Rαβµν , (53)

I Satisfies the Bianchi identities

Rαβγδ ;µ +Rαβδµ;γ +Rαβµγ ;δ = 0. (54)
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Riemann Curvature Tensor IV

I Define the Ricci curvature tensor as the contraction of the
Riemann tensor

Rαβ ≡ Rµαµβ, (55)

I Ricci scalar/curvature as the contraction of the Ricci curvature
tensor.

R ≡ Rαα (56)

I Define the divergence-free Einstein tensor

Gµν = Rµν −
1

2
gµνR (57)
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Stress-Energy Tensor I

In general relativity, the single Newtonian potential Φ is
replaced with ten potentials gµν

I Describe the source of gravity as a Stress-energy tensor
I Energy density: ρ
I Energy flux: j = ρv
I Stress tensor: dFi = Sij n̂

jdA

Tij =

(
ρ jj
ji Sij

)
(58)

I Conservation of energy states

∇µTµν = 0 (59)
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General Relativity
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General theory of relativity
Spacetime tells matter how to move; matter tells spacetime how
to curve.

John A. Wheeler

Gµν = 8πTµν
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Pseudo-Riemannian manifolds

Spacetime is a manifold that is continuous and differentiable.
I Define scalars, vectors, 1-forms and general tensor fields
I Able to take derivatives at any point
I Locally, these points are ordered as points in a Euclidian space
I We specify a distance concept by adding a metric g, which

contains information about how fast clocks proceed and what
are the distances between points.

I A differentiable manifold with a metric as additional structure,
is termed a (pseudo-)Riemannian manifold.

Tjonnie Li Intensive course in Physics: Gravitational Waves 39



Dual Spaces Tensors Derivatives Curvature GR

Local Lorentz Frame I

I We now want to assign a metric to spacetime.
I Introduce a local Lorentz frame (LLF).

I Freefall at point P.
I The equivalence principle: all effects of gravitation disappear and

that we locally obtain the metric of the special theory of
relativity

I This is the Minkowski metric
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Local Lorentz Frame II

I While in special relativity this can be a global coordinate
system, in general relativity (GR) this is only locally possible.

I The metric becomes gµν → ηµν

ηµν = diag (−1,+1,+1,+1) (60)

I Define distances using ds2 = ηµνdx
µdxν

I For a Riemannian manifold all diagonal elements need to be
positive.

I The signature (the sum of the diagonal elements) of the metric
of spacetime is +2 → pseudo-Riemannian.
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Curved spacetime I

I In a curved spacetime we cannot define a global Lorentz frame
for which gαβ = ηαβ .

I However, it is possible to choose coordinates such that in the
vicinity of P this equation is almost valid.

I Equivalence principle.
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Curved spacetime II

I For such a coordinate system one has

gαβ(P) = ηαβ (61)
∂

∂xγ
gαβ(P) = 0 (62)

∂2

∂xγ∂xµ
gαβ(P) 6= 0 (63)

I The existence of local Lorentz frames expresses that each curved
spacetime has at each point a flat tangent space.

I All tensor manipulations occur in this tangent space.
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Newtonian Tidal forces I

How to find a measure of the curvature of spacetime?
I Drop a single test particle?

I Go along in free-fall
I Particle at rest (straight line in time direction)
I Nothing that betrays curvature
I A single particle is insufficient to discover effects of curvature.
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Newtonian Tidal forces II
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Newtonian Tidal forces III

I Drop two test particles?
I Free-fall observers fall in straight line towards center of Earth
I Both particles follow paths that lead to the center of the Earth
I Particles move towards each other → Tidal forces
I According to Newton both paths interact because of gravitation,
I According to Einstein this occurs because spacetime is curved.

Gravitation is a property of the curvature of spacetime
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Newtonian Tidal forces IV

I The Newtonian equations of motion for particles P and Q are(
d2xj
dt2

)
(P )

= −
(
∂Φ

∂xj

)
(P )

(64)(
d2xj
dt2

)
(Q)

= −
(
∂Φ

∂xj

)
(Q)

, (65)

with Φ being the gravitational potential.
I Define ~ξ = (xj)(P ) − (xj)(Q) as the separation between both

particles.

I For parallel trajectories one has d~ξ
dt = 0.
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Newtonian Tidal forces V

I Taylor expansion to leading order in ~ξ gives

d2ξj
dt2

= −
(

∂2Φ

∂xj∂xk

)
ξk (66)

= −Ejkξk (67)

I And we define the gravitational tidal tensor E

Ejk =

(
∂2Φ

∂xj∂xk

)
, (68)

Newtonian geodesic deviation.
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Einstein equations I

I Consider a particle along a worldline.
I This worldline is parameterized with proper time τ on a clock

that is carried by the particle.
I Denote the position of the particle at a point of the worldline

with P(τ)
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Einstein equations II

I The velocity ~U is the tangent vector of the curve and is given by

~U =
dP
dτ

=
d

dτ
. (69)

I For the velocity in the LLF at point P

~U2 =

−→
dP ·

−→
dP

dτ2
(70)

=
−dτ2

dτ2
(71)

= −1, (72)

I Because this equation yields a number (scalar), it is valid in
every coordinate system.
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Einstein equations III

I Four-velocity vector has length 1 and points in the time
direction.

I Components of the velocity are given by

Uα =
dxα

dτ
. (73)

Tjonnie Li Intensive course in Physics: Gravitational Waves 51



Dual Spaces Tensors Derivatives Curvature GR

Einstein equations IV

I Consider a particle moving freely
I Must move in a straight line (parallel transport its own velocity)

∇~U
~U = 0, (74)

or

d2xα

dτ2
+ Γαµν

dxµ

dτ

dxν

dτ
= 0. (75)

I which is the expression for a geodesic.
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Einstein equations V

I Suppose we have two
particles that at a certain
instant (τ = 0)

I At rest with respect to
each other.

I We define the separation
vector ~ξ, which points
from one particle to the
other.

∇~U
~ξ = 0 (76)
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Einstein equations VI

I Demand that the particles are initially (τ = 0) at rest with
respect to each other

I Define ~ξ such that in the LLF of particle P this vector ~ξ is
purely spatial

∇~U
~ξ = 0

~U · ~ξ = 0

 at point P for τ = 0. (77)

I The second derivative ∇~U∇~U
~ξ does not vanish.

Geodesics of the particles are forced together or apart
(depending on the metric) when time progresses.
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Einstein equations VII
I One can now write

∇~U∇~U
~ξ = −R(_, ~U, ~ξ, ~U), (78)

with R being the curvature tensor.
I In the LLF of particle P at time τ = 0 one has U0 = 1 and
U i = 0.

(∇~U∇~U
~ξ)j =

∂2~ξj

∂t2
= −RjαβγU

αξβUγ = −Rj0k0ξ
k, (79)

I since the velocity ~U only has a non-vanishing time component in
the LLF of particle P

I while the separation vector ~ξ only has spacelike components
k = 1, 2, 3.
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Einstein equations VIII

I In the LLF the geodesic deviation is given by

∂2ξj

∂t2
= −Rj0k0ξ

k, (80)

I while in Newtonian mechanics we have found that

∂2ξj

∂t2
= −Ejkξk. (81)

I Comparing both expressions yields

Rj0k0 = Ejk =
∂2Φ

∂xjxk
. (82)
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Einstein equations IX

I According to Newton one has

∇2Φ = 4πGρ → ∂j∂kΦ δjk = Ejkδjk = Ejj , (83)

I we find for the trace of the gravitational tidal tensor

Ejj = 4πGρ (84)

I In analogy one might expect that in GR one has

Rj0j0 = 4πGρ ? (85)
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Einstein equations X

I Should not depend on the choice of coordinate system!
I The equation exist in a special system: the LLF.

I Find a relation between tensors.
I In the LLF one has R0000 = 0 en R0

000 = 0 because of
antisymmetry.

Rj0j0 = 4πGρ→ Rµ0µ0 = 4πGρ (86)
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Einstein equations XI

I Another difficulty: at the left of the equal sign we have two
indices, while at the right there are none.

I Thus, one might expect that

Rαβ = 4πGTαβ ? (87)

I where Tαβ represents the energy stress tensor, with T00 = ρ.

Einstein made this guess already in 1912, but it is incorrect!

Tjonnie Li Intensive course in Physics: Gravitational Waves 59



Dual Spaces Tensors Derivatives Curvature GR

Einstein equations XII

I We can show that the Ricci tensor is given by

Rαγ ≈ ∂β∂γgαβ + non-linear terms. (88)

I Proposed equations constitute a set of 10 partial differential
equations for the 10 components of the metric gαβ

I But we are at liberty to choose the coordinate system where we
are going to work.

I Set 4 of the 10 components of gαβ
I However, we would have 10 partial differential equations for 6

unknowns.

What we need are 6 equations for 6 unknowns
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Einstein equations XIII
I We can also consider the conservation laws for energy and

momentum.

∇βTαβ = 0. (89)

I But the LHS does not obey this divergence criterion

∇βRαβ 6= 0. (90)

I Instead, it follows from the Bianchi identities that

∇βGαβ = 0 (91)

I where Gαβ is defined as

Gαβ ≡ Rαβ −
1

2
Rgαβ, (92)
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Einstein equations XIV

I It seems reasonable to assume that Nature has chosen

Gαβ =
8πG

c4
Tαβ. (93)

I Which are exactly the Einstein equations.
I The proportionality factor (8πG/c4) can be found by taking the

Newtonian limit.

Tjonnie Li Intensive course in Physics: Gravitational Waves 62


	Dual Spaces
	Dual Spaces

	Tensors
	Tensors

	Derivatives
	Derivatives

	Curvature
	Curvature

	GR
	GR


