		0000000

Intensive Course in Physics Gravitational Waves

Tjonnie G. F. Li

Chapter I: Brief Overview of General Relativity

November 7, 2016

		0000000

MATHEMATICAL PRELUDE

Tjonnie Li

VECTORS AND DUAL SPACES I

- Consider a position vector $\mathbf{r}(u_1, u_2, u_3)$ of \mathcal{P}
 - where u_1, u_2, u_3 are the coordinates of the vector in some curvilinear coordinate system (e.g. polar coordinates).
- ▶ Define the vector e₁ = ∂r/∂u₁ that is tangent to the u₁ curve at P.
 ▶ In general, we can write

$$\mathbf{e}_{\mathbf{i}} = \frac{\partial \mathbf{r}}{\partial u_i} \tag{1}$$

 $\mathbf{e}_{\mathbf{i}}$ form a basis for the curvilinear coordinate system.

VECTORS AND DUAL SPACES II

 An infinitesimal vector displacement in a general coordinate can be written as

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial u_1} du_1 + \frac{\partial \mathbf{r}}{\partial u_2} du_2 + \frac{\partial \mathbf{r}}{\partial u_3} du_3$$
$$= du_1 \mathbf{e_1} + du_2 \mathbf{e_2} + du_3 \mathbf{e_3}, \tag{2}$$

• where du_i are the infinitesimal displacements along the u_i curves.

Dual Spaces		
•0		000000

VECTORS AND DUAL SPACES III

- Consider the surface $u_1 = c_1$ where c_1 is some constant.
- The vector $\epsilon_1 = \nabla u_1$ is a vector normal to the $u_1 = c_1$ plane.
- ▶ In general, one can write

$$\epsilon_{\mathbf{i}} = \nabla u_i \tag{3}$$

These also form a set of basis vectors in this curvilinear coordinate system.

Dual Spaces				
•0	00000	000	0000	0000000

VECTORS AND DUAL SPACES IV

A vector **a** can therefore be written as

$$\mathbf{a} = \alpha_1 \mathbf{e_1} + \alpha_2 \mathbf{e_2} + \alpha_3 \mathbf{e_3}$$
$$= \beta_1 \epsilon_1 + \beta_2 \epsilon_2 + \beta_3 \epsilon_3, \tag{4}$$

- $\alpha_1, \alpha_2, \alpha_3$: contravariant components of **a**
- ▶ $\beta_1, \beta_2, \beta_3$: covariant components of **a**

EINSTEIN NOTATION I

- Useful to denote the vector ϵ_i by e^i .
- Position of the index (super- or subscript) distinguishes the different sets of dual vectors.
- ▶ Write the vector **a** in either basis sets as

$$\mathbf{a} = a^{1}\mathbf{e}_{1} + a^{2}\mathbf{e}_{2} + a^{3}\mathbf{e}_{3}$$
$$= a_{1}\mathbf{e}^{1} + a_{2}\mathbf{e}^{2} + a_{3}\mathbf{e}^{3}, \tag{5}$$

- a^i : contravariant components of **a**
- a_i : covariant components of **a**

Dual Spaces	Tensors 00000	Derivatives	Curvature 0000	GR 000 0000

EINSTEIN NOTATION II

▶ Define the Einstein notation

any index that appears exactly twice, once as a subscript and once as a superscript, in any term of an expression is understood to be summed over all the values that an index in that position can take (unless explicitly stated otherwise).

▶ Example: in a three-dimensional space we can write.

$$a^{i}b_{i} = \sum_{i=1}^{3} a^{i}b_{i}$$
$$= a^{1}b_{1} + a^{2}b_{2} + a^{3}b_{3}$$
(6)

Tensors		
•0000		0000000

GENERAL COORDINATE TRANSFORM I

• Consider general coordinate transformation u^i to u'^i

$$u^{\prime i} = u^{\prime i} \left(u^i \right). \tag{7}$$

▶ Assume that this coordinate transformation can be inverted

$$u^{i} = u^{i} \left(u^{\prime i} \right). \tag{8}$$

▶ The two sets of basis vectors in the new coordinate system are

$$\mathbf{e}'_i = \frac{\partial \mathbf{r}}{\partial u'^i}$$
 and $\mathbf{e}'^i = \nabla u'^i$. (9)

Tjonnie Li

Tensors		
•0000		000 0000
		·

GENERAL COORDINATE TRANSFORM II

▶ Use the chain rule to perform a coordinate transform

$$\mathbf{e}_{i} = \frac{\partial \mathbf{r}}{\partial u^{i}}$$
$$= \frac{\partial u^{\prime j}}{\partial u^{i}} \frac{\partial \mathbf{r}}{\partial u^{\prime j}}$$
$$= \frac{\partial u^{\prime j}}{\partial u^{i}} \mathbf{e}_{j}^{\prime}$$

▶ Similarly, we can rewrite the second set of basis vectors as

$$\mathbf{e}^{j} = \frac{\partial u^{j}}{\partial u^{\prime i}} \mathbf{e}^{\prime i} \tag{10}$$

Tjonnie Li

Tensors	Derivatives	Curvature	GR
		0000	0000000

FIRST ORDER TENSORS I

- ▶ Recall from Eq. (4): write a vector **a** either in the covariant or the contravariant basis sets.
- \blacktriangleright In the contravariant form, the vector ${\bf a}$ written as

a

$$= a^{\prime i} \mathbf{e}_{i}^{\prime}$$
$$= a^{j} \mathbf{e}_{j}$$
$$= a^{j} \frac{\partial u^{\prime i}}{\partial u^{j}} \mathbf{e}_{j}^{\prime}. \tag{11}$$

▶ Contravariant components of a vector **a** transform as

$$a'^{i} = a^{j} \frac{\partial u'^{i}}{\partial u^{j}}.$$
 (12)

Tjonnie Li

Tensors		
0000		

FIRST ORDER TENSORS II

▶ Similarly, in the covariant form we can write

$$\mathbf{a} = a'_{i} \mathbf{e}'^{i}$$
$$= a_{j} \mathbf{e}^{j}$$
$$= a_{j} \frac{\partial u^{j}}{\partial u'^{i}} \mathbf{e}'^{i}.$$
(13)

▶ Components of a covariant vector transform as

$$a_i' = a_j \frac{\partial u^j}{\partial u'^i}.$$
 (14)

 a_i are considered the contravariant components of a first-order tensor if they transform as Eq. (12). Similarly, a_j are covariant components of a vector if it transforms as Eq. (14).

Tjonnie Li

Tensors		
00000		000 000

ZEROTH ORDER TENSORS

What about quantities that are unchanged by a general coordinate transformation?

- Example: length of a vector given by $r^2 = x^2 + y^2 + z^2$.
- ▶ Refer to these quantities as scalars or zeroth-order tensors.

Scalars play a crucial role in general relativity as observables

Tensors		
00000		

SECOND-ORDER AND HIGHER-ORDER TENSORS

- ▶ Generalise the discussion for first-order to tensors of higher rank.
- ▶ Example: components of a second-order tensor transform as

$$T'^{ij} = \frac{\partial u'^i}{\partial u^k} \frac{\partial u'^j}{\partial u^l} T^{kl}, \qquad (15)$$

$$T_j^{\prime i} = \frac{\partial u^{\prime i}}{\partial u^k} \frac{\partial u^l}{\partial u^{\prime j}} T_l^k, \tag{16}$$

$$T'_{ij} = \frac{\partial u^k}{\partial u'^i} \frac{\partial u^l}{\partial u'^j} T_{kl}.$$
 (17)

METRIC TENSOR I

Any curvilinear coordinate system is completely described at each point by a symmetric second-order tensor \mathbf{g} called the metric tensor.

 Covariant and contravariant components of the metric tensor are given by

$$g_{ij} = \mathbf{e}_i \cdot \mathbf{e}_j \tag{18}$$
$$g^{ij} = \mathbf{e}^i \cdot \mathbf{e}^j, \tag{19}$$

▶ Mixed components of the metric tensor is the Kronecker delta

$$g_j^i = \mathbf{e}^i \cdot \mathbf{e}_j = \delta_j^i, \tag{20}$$

Tjonnie Li

Tensors		
00000		000 000

METRIC TENSOR II

- > Suppose an infinitesimal vector displacement $d\mathbf{r} = du^i \mathbf{e}_i$.
- ▶ Write the square of the infinitesimal arc length ds^2 in terms of the metric tensor

$$ds^{2} = d\mathbf{r} \cdot d\mathbf{r}$$

= $du^{i} \mathbf{e}_{i} \cdot du^{j} \mathbf{e}_{j}$
= $g_{ij} du^{i} du^{j}$. (21)

• Can also show that the volume element dV is given by

$$dV = \sqrt{g} du^1 du^2 du^3, \qquad (22)$$

• where
$$g = \det g_{ij}$$

Tjonnie Li

Tensors		
00000		000 000

METRIC TENSOR III

Scalar product between two vectors in terms of metric tensor.

$$\mathbf{a} \cdot \mathbf{b} = a^i \mathbf{e}_i \cdot b^j \mathbf{e}_j = a^i b^j g_{ij},\tag{23}$$

$$\mathbf{a} \cdot \mathbf{b} = a_i \mathbf{e}^i \cdot b_j \mathbf{e}^j = a_i b_j g^{ij}, \tag{24}$$

$$\mathbf{a} \cdot \mathbf{b} = a^i \mathbf{e}_i \cdot b_j \mathbf{e}^j = a^i b^j \delta^j_i = a^i b_i \tag{25}$$

$$\mathbf{a} \cdot \mathbf{b} = a_i \mathbf{e}^i \cdot b^j \mathbf{e}_j = a_i b_j \delta^i_j = a_i b^i \tag{26}$$

• By comparing Eqs. (23)–(26)

$$g_{ij}b^j = b_i$$
 and $g^{ij}b_j = b^i$. (27)

• Metric tensor can be used to raise and lower indices.

Also works for higher-order tensors

$$T_{ij} = g_{ik}T_j^k = g_{ik}g_{jl}T^{kl}.$$
 (28)

Tjonnie Li

	Derivatives •00	

DERIVATIVES OF VECTORS I

- ▶ In general coordinate systems, the basis vectors depend on the coordinates themselves.
- ▶ When we differentiate tensors, we must also differentiate the basis vectors.
- ▶ Consider the partial derivative $\frac{\partial \mathbf{e}_i}{\partial u^j}$: itself a vector!
- Express in terms of the basis vectors

$$\frac{\partial \mathbf{e}_i}{\partial u^j} = \Gamma^k{}_{ij} \mathbf{e}_k. \tag{29}$$

▶ Rearrange Eq. (29) to get

$$\Gamma^{k}{}_{ij} = \mathbf{e}^{k} \cdot \frac{\partial \mathbf{e}_{i}}{\partial u^{j}} \tag{30}$$

Tjonnie Li

	Derivatives	
	000	000 000

DERIVATIVES OF VECTORS II

 Similarly, we can show that the derivative of the contravariant basis vectors are given by

$$\frac{\partial \mathbf{e}^{i}}{\partial u^{j}} = -\Gamma^{i}{}_{kj}\mathbf{e}^{k}.$$
(31)

▶ In Cartesian coordinates, basis vectors remain constant throughout the coordinate system.

	Derivatives	
	000	

DERIVATIVES OF VECTORS III

• Christoffel symbol is symmetric under the interchange of the i and j subscript, because

$$\frac{\partial \mathbf{e}_{j}}{\partial u^{j}} = \frac{\partial^{2} \mathbf{r}}{\partial u^{j} \partial u^{i}}
= \frac{\partial^{2} \mathbf{r}}{\partial u^{i} \partial u^{j}}
= \frac{\partial \mathbf{e}_{j}}{\partial u^{i}}.$$
(32)

 Express components of Chirstoffel symbol in terms of the metric tensor

$$\Gamma^{m}{}_{ij} = \frac{1}{2}g^{mk} \left(\frac{\partial g_{jk}}{\partial u^{i}} + \frac{\partial g_{ki}}{\partial u^{j}} - \frac{\partial g_{ij}}{\partial u^{k}}\right).$$
(33)

	Derivatives	
	000	0000000

COVARIANT DERIVATIVE I

In general coordinate systems, differentiation of components of a tensor with respect to the coordinates does not, in general, result in a tensor (except for zeroth-order tensors).

▶ Use the Christoffel symbol to introduce the covariant derivative that when acted on components of a tensor does yield components of another tensor.

	Derivatives	
	000	

COVARIANT DERIVATIVE II

 \blacktriangleright Consider the derivative of a vector ${\bf v}$ in the contravariant form

$$\frac{\partial \mathbf{v}}{\partial u^{j}} = \frac{\partial}{\partial u^{j}} \left(v^{i} \mathbf{e}_{i} \right)
= \frac{\partial v^{i}}{\partial u^{j}} \mathbf{e}_{i} + v^{i} \frac{\partial \mathbf{e}_{i}}{\partial u^{j}}
= \frac{\partial v^{i}}{\partial u^{j}} \mathbf{e}_{i} + v^{i} \Gamma^{k}{}_{ij} \mathbf{e}_{k}
= \frac{\partial v^{i}}{\partial u^{j}} \mathbf{e}_{i} + v^{k} \Gamma^{i}{}_{kj} \mathbf{e}_{i}
= \left(\frac{\partial v^{i}}{\partial u^{j}} + v^{k} \Gamma^{i}{}_{kj} \right) \mathbf{e}_{i},$$
(34)

• where we have changed the dummy indices i and k.

▶ The terms in parentheses is called the covariant derivative.

Tjonnie Li

	Derivatives	
	000	

COVARIANT DERIVATIVE III

▶ A short-hand notation for the covariant derivative is given by

$$v^{i}_{;j} \equiv \frac{\partial v^{i}}{\partial u^{j}} + v^{k} \Gamma^{i}_{kj}.$$
(35)

• The covariant derivative of the covariant components can be shown to be

$$v_{i;j} = \frac{\partial v_i}{\partial u^j} - v^k \Gamma^k{}_{ij}.$$
(36)

▶ Introduce a similar notation for the partial derivative.

$$v^{i}{}_{,j} \equiv \frac{\partial v^{i}}{\partial u^{j}}.$$
 (37)

▶ Follow a procedure similar to Eq. (34) to find the covariant derivative of higher order tensors.

Tjonnie Li

COVARIANT DERIVATIVE IV

 Example, the covariant derivative of a second-order tensor can be written as

$$T^{ij}_{;k} = T^{ij}_{,k} + \Gamma^{i}_{lk} T^{lj} + \Gamma^{j}_{lk} T^{il}, \qquad (38)$$

$$T^{i}{}_{j;k} = T^{i}{}_{j,k} + \Gamma^{i}{}_{lk}T^{l}_{j} - \Gamma^{l}{}_{jk}T^{i}_{l}, \qquad (39)$$

$$T_{ij;k} = T_{ij,k} - \Gamma^{l}{}_{ik}T_{lj} - \Gamma^{l}{}_{jk}T_{il}.$$
 (40)

Higher order tensors: For each contravariant index use a Christoffel symbol with a plus sign, and for a covariant index we use a Christoffel symbol with a minus sign.

	Derivatives	
	000	

Absolute derivative I

• Consider a derivative of a vector $\mathbf{v}(\mathbf{t})$ along some curve parametrised by t.

$$\frac{d\mathbf{v}}{dt} = \frac{dv^{i}}{dt}\mathbf{e}_{i} + v^{i}\frac{d\mathbf{e}_{i}}{dt}$$

$$= \frac{dv^{i}}{dt}\mathbf{e}_{i} + v^{i}\frac{\partial\mathbf{e}_{i}}{\partial u^{k}}\frac{du^{k}}{dt}$$

$$= \frac{dv^{i}}{dt}\mathbf{e}_{i} + \Gamma^{j}{}_{ik}v^{i}\frac{du^{k}}{dt}\mathbf{e}_{j}$$

$$= \left(\frac{dv^{j}}{dt} + \Gamma^{i}{}_{jk}\frac{du^{k}}{dt}\right)\mathbf{e}_{j}$$

$$= \left(v^{j}{}_{;k}\frac{du^{k}}{dt}\right)\mathbf{e}_{j},$$
(41)

	Derivatives	
	000	

Absolute derivative II

▶ The term inside the parenthesis is called the absolute derivative

$$\frac{\delta v^i}{\delta t} \equiv v^i{}_{;k} \frac{du^k}{dt},\tag{42}$$

▶ For covariant components, we have

$$\frac{\delta v_i}{\delta t} \equiv v_{i;k} \frac{du^k}{dt}.$$
(43)

	Derivatives	
	000	

Absolute derivative III

▶ For second-order tensors, we can arrive at similar expressions

$$\frac{\delta T^{ij}}{\delta t} \equiv T^{ij}{}_{;k} \frac{du^k}{dt}, \qquad (44)$$

$$\frac{\delta T^{i}{}_{j}}{}_{\underline{\delta}t} \equiv T^{i}{}_{j;k} \frac{du^k}{dt}, \qquad (45)$$

$$\frac{\delta T_{ij}}{\delta t} \equiv T_{ij;k} \frac{du^k}{dt}.$$
(46)

 These expression can be generalised to tensors of arbitrary orders.

	Curvature ••••	GR 000 0000

- A geodesic is a generalization of the notion of a straight line to curved spaces and has two equivalent properties
- 1. the curve of the shortest length between two points,
- 2. the curve whose tangent vectors remain parallel when transported along the curve.

GEODESICS 1

			Curvature	
00	00000	000	0000	000000
\sim	T T			

GEODESICS II

- Consider a curve $\mathbf{r}(s)$, which is parameterised by the arc length s starting from some point on the curve.
- The tangent vector is given by $\mathbf{t} = d\mathbf{r}/ds$.
- ▶ Find the geodesic by the property that the tangent vector remains parallel moving along the curve,

$$\frac{d\mathbf{t}}{ds} = 0. \tag{47}$$

	Curvature ••••	GR 000 000 0

GEODESICS III

 \blacktriangleright Tangent vector **t** is given by

$$\mathbf{t} = t^i \mathbf{e}_i \tag{48}$$

▶ The geodesic can be found by evaluating the absolute derivative

$$\frac{d\mathbf{t}}{ds} = t^{i}{}_{;k} \frac{du^{k}}{ds} \mathbf{e}_{i}$$

$$= \left(\frac{dt^{i}}{ds} + \Gamma^{i}{}_{jk}t^{j}\right) \frac{du^{k}}{ds} \mathbf{e}_{i}$$

$$= 0.$$
(49)

▶ Since $t^j = du^j/ds$, we can find an alternative expression for the geodesic

$$\frac{d^2u^i}{ds^2} + \Gamma^i{}_{jk}\frac{du^j}{ds}\frac{du^k}{ds} = 0$$
(50)

Tjonnie Li

	Curvature	
	0000	

PARALLEL TRANSPORT I

Consider parallel transporting a vector along a closed loop.

	Curvature	
	0000	

PARALLEL TRANSPORT II

Measure the intrinsic curvature by parallel transportation along a closed loop

	Curvature	
	0000	000 000

RIEMANN CURVATURE TENSOR I

- ▶ Recall: parallel transport along u^k is given by $t^i_{;k}$.
- Go around an infinitesimal square in the u^j and u^k direction.

	Curvature	
	0000	0000000

RIEMANN CURVATURE TENSOR II

 Change in a vector v given by commutator of two covariant derivatives

$$v_{i;[j,k]} = v_{i;jk} - v_{i;kj}$$
$$\equiv R^l_{ijk} v_l, \tag{51}$$

- where R^{l}_{ijk} is the so-called Riemann tensor.
- ▶ The Riemann tensor provides a measure of the curvature.

	Curvature	
	0000	

RIEMANN CURVATURE TENSOR III

▶ Can be rewritten as

$$R^{\beta}{}_{\alpha\mu\nu} = \left(\Gamma^{\beta}{}_{\alpha\nu,\mu} - \Gamma^{\beta}{}_{\alpha\mu,\nu} + \Gamma^{\gamma}{}_{\alpha\nu}\Gamma^{\beta}{}_{\gamma\mu} - \Gamma^{\gamma}{}_{\alpha\mu}\Gamma^{\beta}{}_{\gamma\nu}\right).$$
(52)

▶ Riemann tensor has the following properties

$$R_{\mu\nu\alpha\beta} = -R_{\mu\nu\beta\alpha},$$

$$R_{\mu\nu\alpha\beta} = -R_{\nu\mu\alpha\beta},$$

$$R_{\mu\nu\alpha\beta} = -R_{\alpha\beta\mu\nu},$$
(53)

Satisfies the Bianchi identities

$$R_{\alpha\beta\gamma\delta;\mu} + R_{\alpha\beta\delta\mu;\gamma} + R_{\alpha\beta\mu\gamma;\delta} = 0.$$
 (54)

	Curvature	
	0000	

RIEMANN CURVATURE TENSOR IV

 Define the Ricci curvature tensor as the contraction of the Riemann tensor

$$R_{\alpha\beta} \equiv R^{\mu}{}_{\alpha\mu\beta},\tag{55}$$

 Ricci scalar/curvature as the contraction of the Ricci curvature tensor.

$$R \equiv R^{\alpha}{}_{\alpha} \tag{56}$$

▶ Define the divergence-free Einstein tensor

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R$$
 (57)

Tjonnie Li

	Curvature	
	0000	000 000

STRESS-ENERGY TENSOR I

In general relativity, the single Newtonian potential Φ is replaced with ten potentials $g_{\mu\nu}$

▶ Describe the source of gravity as a Stress-energy tensor

- ▶ Energy density: ρ
- Energy flux: $\mathbf{j} = \rho \mathbf{v}$
- Stress tensor: $dF_i = S_{ij}\hat{n}^j dA$

$$T_{ij} = \begin{pmatrix} \rho & j_j \\ j_i & S_{ij} \end{pmatrix}$$
(58)

Conservation of energy states

$$\nabla_{\mu}T^{\mu\nu} = 0 \tag{59}$$

Tjonnie Li

		GR
		•000000

GENERAL RELATIVITY

Tjonnie Li

				GR
00	<u>00000</u>	000	0000	0000000

GENERAL THEORY OF RELATIVITY

Spacetime tells matter how to move; matter tells spacetime how to curve.

John A. Wheeler

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

		$_{\rm GR}$
		000000

PSEUDO-RIEMANNIAN MANIFOLDS

Spacetime is a manifold that is continuous and differentiable.

- ▶ Define scalars, vectors, 1-forms and general tensor fields
- Able to take derivatives at any point
- ▶ Locally, these points are ordered as points in a Euclidian space
- ▶ We specify a distance concept by adding a metric **g**, which contains information about how fast clocks proceed and what are the distances between points.
- ► A differentiable manifold with a metric as additional structure, is termed a (pseudo-)Riemannian manifold.

		GR
		000000

LOCAL LORENTZ FRAME I

- We now want to assign a metric to spacetime.
- ▶ Introduce a local Lorentz frame (LLF).
 - Freefall at point \mathcal{P} .
 - ▶ The equivalence principle: all effects of gravitation disappear and that we locally obtain the metric of the special theory of relativity
 - ▶ This is the Minkowski metric

LOCAL LORENTZ FRAME II

- ▶ While in special relativity this can be a *global* coordinate system, in general relativity (GR) this is only *locally* possible.
- The metric becomes $g_{\mu\nu} \to \eta_{\mu\nu}$

$$\eta_{\mu\nu} = \text{diag}\left(-1, +1, +1, +1\right) \tag{60}$$

- Define distances using $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$
- For a Riemannian manifold all diagonal elements need to be positive.
- ► The signature (the sum of the diagonal elements) of the metric of spacetime is $+2 \rightarrow$ pseudo-Riemannian.

		GR
		0000000

CURVED SPACETIME I

- ► In a curved spacetime we cannot define a global Lorentz frame for which $g_{\alpha\beta} = \eta_{\alpha\beta}$.
- However, it is possible to choose coordinates such that in the vicinity of \mathcal{P} this equation is *almost* valid.
 - ▶ Equivalence principle.

		$_{\rm GR}$
		0000000

CURVED SPACETIME II

▶ For such a coordinate system one has

$$g_{\alpha\beta}(\mathcal{P}) = \eta_{\alpha\beta} \tag{61}$$

$$\frac{\partial}{\partial x^{\gamma}}g_{\alpha\beta}(\mathcal{P}) = 0 \tag{62}$$

$$\frac{\partial^2}{\partial x^{\gamma} \partial x^{\mu}} g_{\alpha\beta}(\mathcal{P}) \neq 0 \tag{63}$$

- ▶ The existence of local Lorentz frames expresses that each curved spacetime has at each point a flat tangent space.
- ▶ All tensor manipulations occur in this tangent space.

		GR
		0000000

NEWTONIAN TIDAL FORCES I

How to find a measure of the curvature of spacetime?

▶ Drop a single test particle?

- ▶ Go along in free-fall
- Particle at rest (straight line in time direction)
- Nothing that betrays curvature
- ▶ A single particle is insufficient to discover effects of curvature.

		GR
		0000000

NEWTONIAN TIDAL FORCES II

		GR
		0000000

NEWTONIAN TIDAL FORCES III

- Drop two test particles?
 - ▶ Free-fall observers fall in straight line towards center of Earth
 - ▶ Both particles follow paths that lead to the center of the Earth
 - \blacktriangleright Particles move towards each other \rightarrow Tidal forces
 - ▶ According to Newton both paths interact because of gravitation,
 - According to Einstein this occurs because spacetime is curved.

Gravitation is a property of the curvature of spacetime

NEWTONIAN TIDAL FORCES IV

 \blacktriangleright The Newtonian equations of motion for particles P and Q are

$$\left(\frac{d^2 x_j}{dt^2}\right)_{(P)} = -\left(\frac{\partial\Phi}{\partial x^j}\right)_{(P)}$$

$$\left(\frac{d^2 x_j}{dt^2}\right)_{(Q)} = -\left(\frac{\partial\Phi}{\partial x^j}\right)_{(Q)},$$

$$(65)$$

with Φ being the gravitational potential.

- Define $\vec{\xi} = (x_j)_{(P)} (x_j)_{(Q)}$ as the separation between both particles.
- For parallel trajectories one has $\frac{d\vec{\xi}}{dt} = 0$.

Tjonnie Li

		$_{\rm GR}$
		0000000

NEWTONIAN TIDAL FORCES V

• Taylor expansion to leading order in $\vec{\xi}$ gives

$$\frac{d^2\xi_j}{dt^2} = -\left(\frac{\partial^2 \Phi}{\partial x^j \partial x^k}\right)\xi_k \tag{66}$$
$$= -\mathcal{E}_{jk}\xi_k \tag{67}$$

 \blacktriangleright And we define the gravitational tidal tensor ${\cal E}$

$$\mathcal{E}_{jk} = \left(\frac{\partial^2 \Phi}{\partial x^j \partial x^k}\right),\tag{68}$$

Newtonian geodesic deviation.

Tjonnie Li

		GR
		000 000

EINSTEIN EQUATIONS I

- Consider a particle along a worldline.
- This worldline is parameterized with proper time τ on a clock that is carried by the particle.
- Denote the position of the particle at a point of the worldline with $\mathcal{P}(\tau)$

Tjonnie Li

		$_{\rm GR}$
		000 000

EINSTEIN EQUATIONS II

• The velocity \vec{U} is the tangent vector of the curve and is given by

$$\vec{U} = \frac{d\mathcal{P}}{d\tau} = \frac{d}{d\tau}.$$
(69)

 \blacktriangleright For the velocity in the LLF at point ${\cal P}$

$$\vec{U}^{2} = \frac{\vec{dP} \cdot \vec{dP}}{d\tau^{2}}$$
(70)
$$= \frac{-d\tau^{2}}{d\tau^{2}}$$
(71)
$$= -1,$$
(72)

 Because this equation yields a number (scalar), it is valid in every coordinate system.

Tjonnie Li

		GR
		000 000

EINSTEIN EQUATIONS III

- ▶ Four-velocity vector has length 1 and points in the time direction.
- Components of the velocity are given by

$$U^{\alpha} = \frac{dx^{\alpha}}{d\tau}.$$
(73)

		GR
		000000

EINSTEIN EQUATIONS IV

- Consider a particle moving freely
- ▶ Must move in a straight line (parallel transport its own velocity)

$$\nabla_{\vec{U}}\vec{U} = 0, \tag{74}$$

or

$$\frac{d^2x^{\alpha}}{d\tau^2} + \Gamma^{\alpha}_{\ \mu\nu}\frac{dx^{\mu}}{d\tau}\frac{dx^{\nu}}{d\tau} = 0.$$
(75)

▶ which is the expression for a geodesic.

Dual Spaces		Derivatives	Curvature	GR
	00000			0000000

EINSTEIN EQUATIONS V

- Suppose we have two particles that at a certain instant $(\tau = 0)$
- At rest with respect to each other.
- We define the separation vector $\vec{\xi}$, which points from one particle to the other.

$$\nabla_{\vec{U}}\vec{\xi} = 0 \qquad (76)$$

		GR
		000000

EINSTEIN EQUATIONS VI

- ▶ Demand that the particles are initially $(\tau = 0)$ at rest with respect to each other
- ► Define $\vec{\xi}$ such that in the LLF of particle *P* this vector $\vec{\xi}$ is purely spatial

$$\left. \begin{array}{l} \nabla_{\vec{U}} \vec{\xi} &= 0 \\ \vec{U} \cdot \vec{\xi} &= 0 \end{array} \right\} \quad \text{at point } \mathcal{P} \text{ for } \tau = 0.$$
 (77)

• The second derivative $\nabla_{\vec{U}} \nabla_{\vec{U}} \vec{\xi}$ does not vanish.

Geodesics of the particles are forced together or apart (depending on the metric) when time progresses.

Tjonnie Li

		$_{\rm GR}$
		000 000

EINSTEIN EQUATIONS VII

▶ One can now write

$$\nabla_{\vec{U}} \nabla_{\vec{U}} \vec{\xi} = -\mathbf{R}(\underline{\ }, \vec{U}, \vec{\xi}, \vec{U}), \tag{78}$$

with \mathbf{R} being the curvature tensor.

• In the LLF of particle P at time $\tau = 0$ one has $U^0 = 1$ and $U^i = 0$.

$$(\nabla_{\vec{U}}\nabla_{\vec{U}}\vec{\xi})^j = \frac{\partial^2 \vec{\xi}^j}{\partial t^2} = -R^j_{\alpha\beta\gamma} U^\alpha \xi^\beta U^\gamma = -R^j_{0k0} \xi^k, \qquad (79)$$

- \blacktriangleright since the velocity \vec{U} only has a non-vanishing time component in the LLF of particle $\mathcal P$
- while the separation vector $\vec{\xi}$ only has spacelike components k = 1, 2, 3.

		$_{\rm GR}$
		000 000

EINSTEIN EQUATIONS VIII

▶ In the LLF the geodesic deviation is given by

$$\frac{\partial^2 \xi^j}{\partial t^2} = -R^j_{0k0} \xi^k, \tag{80}$$

▶ while in Newtonian mechanics we have found that

$$\frac{\partial^2 \xi^j}{\partial t^2} = -\mathcal{E}_{jk} \xi^k. \tag{81}$$

Comparing both expressions yields

$$R_{j0k0} = \mathcal{E}_{jk} = \frac{\partial^2 \Phi}{\partial x^j x^k}.$$
(82)

Tjonnie Li

EINSTEIN EQUATIONS IX

According to Newton one has

$$\nabla^2 \Phi = 4\pi G\rho \quad \to \quad \partial_j \partial_k \Phi \,\delta^{jk} = \mathcal{E}_{jk} \delta^{jk} = \mathcal{E}^j_{\ j}, \qquad (83)$$

▶ we find for the trace of the gravitational tidal tensor

$$\mathcal{E}^{j}_{\ j} = 4\pi G\rho \tag{84}$$

▶ In analogy one might expect that in GR one has

$$R^{j}_{\ 0j0} = 4\pi G\rho \quad ? \tag{85}$$

Tjonnie Li

Dual Spaces	Tensors	Derivatives	Curvature	GR

EINSTEIN EQUATIONS X

Should not depend on the choice of coordinate system!

- ▶ The equation exist in a special system: the LLF.
- ▶ Find a relation between tensors.
 - ▶ In the LLF one has $R_{0000} = 0$ en $R_{000}^0 = 0$ because of antisymmetry.

$$R^{j}_{0j0} = 4\pi G\rho \to R^{\mu}_{\ 0\mu0} = 4\pi G\rho \tag{86}$$

EINSTEIN EQUATIONS XI

- ► Another difficulty: at the left of the equal sign we have two indices, while at the right there are none.
- ▶ Thus, one might expect that

$$R_{\alpha\beta} = 4\pi G T_{\alpha\beta} \quad ? \tag{87}$$

• where $T_{\alpha\beta}$ represents the energy stress tensor, with $T_{00} = \rho$.

Einstein made this guess already in 1912, but it is incorrect!

		$_{\rm GR}$
		000000

EINSTEIN EQUATIONS XII

▶ We can show that the Ricci tensor is given by

$$R_{\alpha\gamma} \approx \partial^{\beta} \partial_{\gamma} g_{\alpha\beta} + \text{non-linear terms.}$$
 (88)

- ► Proposed equations constitute a set of 10 partial differential equations for the 10 components of the metric $g_{\alpha\beta}$
- ▶ But we are at liberty to choose the coordinate system where we are going to work.
 - Set 4 of the 10 components of $g_{\alpha\beta}$
- ▶ However, we would have 10 partial differential equations for 6 unknowns.

What we need are 6 equations for 6 unknowns

			Gn
00 00000	000	0000	000 000

EINSTEIN EQUATIONS XIII

 We can also consider the conservation laws for energy and momentum.

$$\nabla_{\beta} T^{\alpha\beta} = 0. \tag{89}$$

▶ But the LHS does not obey this divergence criterion

$$\nabla_{\beta} R^{\alpha\beta} \neq 0. \tag{90}$$

▶ Instead, it follows from the Bianchi identities that

$$\nabla_{\beta}G^{\alpha\beta} = 0 \tag{91}$$

• where $G_{\alpha\beta}$ is defined as

$$G_{\alpha\beta} \equiv R_{\alpha\beta} - \frac{1}{2} R g_{\alpha\beta}, \qquad (92)$$

Tjonnie Li

		GR
		000 000

EINSTEIN EQUATIONS XIV

▶ It seems reasonable to assume that Nature has chosen

$$G^{\alpha\beta} = \frac{8\pi G}{c^4} T^{\alpha\beta}.$$
 (93)

- ▶ Which are exactly the Einstein equations.
- ► The proportionality factor $(8\pi G/c^4)$ can be found by taking the Newtonian limit.