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Consider a position vector r(uy, ug, u3) of P

where w1, us, us are the coordinates of the vector in some
curvilinear coordinate system (e.g. polar coordinates).

Define the vector e; = aaTrl that is tangent to the u; curve at P.

In general, we can write

or
= B (1)

e; form a basis for the curvilinear coordinate system.
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An infinitesimal vector displacement in a general coordinate can
be written as

or or 81‘
dr = 8u1dU1+a 2dU2+8 .

= dulel aF dUQez = dU363, (2)

where du; are the infinitesimal displacements along the u; curves.
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Consider the surface u; = ¢; where ¢ is some constant.
The vector €; = Vu; is a vector normal to the u; = ¢; plane.

In general, one can write
& = Vu; (3)

These also form a set of basis vectors in this curvilinear
coordinate system.
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A vector a can therefore be written as

a = ojey + ages + azey

= pie1 + Bae2 + Bses, (4)
a1, a9, 3: components of a
B1, B2, Ba: components of a
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Useful to denote the vector ¢ by e'.

Position of the index (super- or subscript) distinguishes the
different sets of dual vectors.

Write the vector a in either basis sets as
a= alel aF a2e2 aF a3e3

= are! + aze? + aze®, (5)

a': contravariant components of a

a;: covariant components of a
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Define the

any index that appears exactly twice, once as a
subscript and once as a superscript, in any term of an
expression is understood to be summed over all the
values that an index in that position can take (unless
explicitly stated otherwise).

Example: in a three-dimensional space we can write.

Tjonnie Li

3
albi: E a’bi
=1

= albl 4F 0/262 4= a363 (6)
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Consider general coordinate transformation u’ to u/®

ot ="t (uz) . (7)
Assume that this coordinate transformation can be inverted

ut = v (u”) . (8)
The two sets of basis vectors in the new coordinate system are

or ; ;
e, = B and " = Vu'". 9)
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Use the chain rule to perform a coordinate transform

_ Or

- oul

_Ou or

~Oul Qul
oul

o

€;

€
Similarly, we can rewrite the second set of basis vectors as

ou’

J
€ _auli

e’ (10)
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Recall from Eq. (4): write a vector a either in the covariant or
the contravariant basis sets.

In the contravariant form, the vector a written as

a=ad"ée]
= i@
= a’e;
~8’U,/i
=al—¢. (11)
oul
Contravariant components of a vector a transform as
) ou'
a" =a'—. (12)
ou’
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Similarly, in the covariant form we can write

N
a=aqae"

= ajej
oul .
aj We”. (13)

Components of a covariant vector transform as

ou?
/ — .
a; = G55 (14)
a; are considered the contravariant components of a first-order
tensor if they transform as Eq. (12). Similarly, a; are covariant
components of a vector if it transforms as Eq. (14).

Tjonnie Li Intensive course in Physics: Gravitational Waves 11



Dual Spaces sors Derivatives

Q0 000

What about quantities that are unchanged by a general
coordinate transformation?

Example: length of a vector given by r? = 22 + y2 + 2°.

Refer to these quantities as or zeroth-order tensors.

Scalars play a crucial role in general relativity as
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Generalise the discussion for first-order to tensors of higher rank.

Example: components of a second-order tensor transform as

1% 13
ou" ou? .,

T = o u L (15)
. out ol
T =k gur 1 (16)
ouF oul
Ti,j = WW kl- (17)
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Any curvilinear coordinate system is completely described at
each point by a symmetric second-order tensor g called the

Covariant and contravariant components of the metric tensor
are given by

9ij = €i- € (18)
gl =¢e'- e, (19)

Mixed components of the metric tensor is the Kronecker delta
gj- = ei 0 ej

= dj, (20)
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Suppose an infinitesimal vector displacement dr = du’e;.

Write the square of the infinitesimal arc length ds? in terms of
the metric tensor

ds? = dr - dr
= du'e; - dujej
= gijdu‘du’. (21)

Can also show that the volume element dV is given by

dV = /gdu' du?du?, (22)
where g = det g;;
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Scalar product between two vectors in terms of metric tensor.

a-b=a'e; -be; =a'tg;,
a-b=a;e'-bje’ =a;b;g",
a-b:a’ei-bje]:albjdg:a’bi

a-b=aqe - bjej = aibj6; = a;b’
By comparing Eqgs. (23)-(26)

g’ = b; and  gYb; = V"

Metric tensor can be used to and indices.

Also works for higher-order tensors
T = gika = gikglekl-
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In general coordinate systems, the basis vectors depend on the
coordinates themselves.

When we differentiate tensors, we must also differentiate the
basis vectors.

oe; .
oud *

Express in terms of the basis vectors

itself a vector!

Consider the partial derivative

Gei
ol = Fkijek. (29)
Rearrange Eq. (29) to get
Oei
Ty =t oo (30)
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Similarly, we can show that the derivative of the contravariant
basis vectors are given by

e ;

In Cartesian coordinates, basis vectors remain constant
throughout the coordinate system.
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Christoffel symbol is symmetric under the interchange of the ¢
and j subscript, because

8ej _ 821'
ow — Ouloul
- 0%r
 Outow
86]'
=— 32
Sui (32)
Express components of Chirstoffel symbol in terms of the metric
tensor
1 Ogjk | Ogri  0gij
[ = =gt =L s 33
i = 99 (Oul t 3w T BuF (33)
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In general coordinate systems, differentiation of components of a
tensor with respect to the coordinates does not, in general,
result in a tensor (except for zeroth-order tensors).

Use the Christoffel symbol to introduce the
that when acted on components of a tensor does yield
components of another tensor.

Tjonnie Li Intensive course in Physics: Gravitational Waves 20



Dual Sy s g : Derivatives

00 000

Consider the derivative of a vector v in the contravariant form

&g _ &
oul  Oul

where we have changed the dummy indices ¢ and k.

The terms in parentheses is called the covariant derivative.
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A short-hand notation for the covariant derivative is given by

i 8 ki
v’ W—i—vf (35)

The covariant derivative of the covariant components can be
shown to be

8’1)2‘

Vi;5 = @ — 'Ukrkij. (36)

Introduce a similar notation for the partial derivative.
V= —. (37)

Follow a procedure similar to Eq. (34) to find the covariant
derivative of higher order tensors.
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Example, the covariant derivative of a second-order tensor can
be written as

T4 =TY ) + TTY + T TY, (38)
Tk =Tk + DT} — T3 TY, (39)
Tijk = Tije — DTy — T T (40)

Higher order tensors: For each contravariant index use a
Christoffel symbol with a plus sign, and for a covariant index we
use a Christoffel symbol with a minus sign.
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Consider a derivative of a vector v(t) along some curve
parametrised by t.

dv  dv’ ;de;
- a®ta
dv’ . Oe; du”
T @ T ouk
dv’ du®

B s

dij+1ﬂi. d7uk iy
dt kg )

 duF
(vl ) e (41)
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The term inside the parenthesis is called the

Yk ; dul
E = ;kﬁa (42)

For covariant components, we have

ot Bk
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For second-order tensors, we can arrive at similar expressions

6T o duF
L T iy O
= T sp—— 4
St P (4)
0T, duk
=Ty 4
5t LT (46)

These expression can be generalised to tensors of arbitrary

orders.
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A geodesic is a generalization of the notion of a straight line to
curved spaces and has two equivalent properties

the curve of the shortest length between two points,

the curve whose tangent vectors remain parallel when
transported along the curve.
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Consider a curve r(s), which is parameterised by the arc length
s starting from some point on the curve.

The tangent vector is given by t = dr/ds.
Find the geodesic by the property that the tangent vector

remains parallel moving along the curve,

dt

= =o. (47)
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Tangent vector t is given by
t = tle; (48)
The geodesic can be found by evaluating the absolute derivative

du®
—e-

dt’ du®

- I‘l tJ .
< + ik ) i — €
0.

_,

@

(49)

Since #/ = du? /ds, we can find an alternative expression for the
geodesic
d?u’ - du! duF
— +I"jp——=0 50
FEAAR (50)
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Consider parallel transporting a vector along a closed loop.
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Measure the curvature by parallel transportation along
a closed loop
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Recall: parallel transport along u* is given by t .

Go around an infinitesimal square in the u/ and u* direction.

A
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Change in a vector v given by commutator of two covariant
derivatives

Yis[.k] = Visik — Viskj
— pl
=R ijkvl, (51)

where Rlijk is the so-called Riemann tensor.

The Riemann tensor provides a measure of the curvature.
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Can be rewritten as
Rﬂa,uu = (F'Bau,,u _ F/Bap,,u + F’Yowrﬂ'y,u _ F’yaur‘ﬁ'ﬂ/> . (52)
Riemann tensor has the following properties

R,uuozﬁ = _R,ulzﬁou
Ruuaﬁ - _Ruuaﬁa
R;u/oz,@ = _Raﬁ,uua (53)

Satisfies the Bianchi identities

Rapgysip + Rapspy + Rapuyis = 0. (54)
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Define the Ricci curvature tensor as the contraction of the
Riemann tensor

Ra,B = Rua,uﬁa (55)
Ricci scalar/curvature as the contraction of the Ricci curvature
tensor.
A=, (56)
Define the divergence-free
1
G;U/ = R;U/ - igul/R (57)
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In general relativity, the single Newtonian potential ® is
replaced with ten potentials g,

Describe the source of gravity as a

Energy density: p
Energy flux: j = pv
Stress tensor: dF; = S’ijﬁjdA

(P
T”_<ji Si') (58)

Conservation of energy states

V,.TH =0 (59)
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Spacetime tells matter how to move; matter tells spacetime how
to curve.

John A. Wheeler
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Spacetime is a manifold that is continuous and differentiable.
Define scalars, vectors, 1-forms and general tensor fields

Able to take derivatives at any point

Locally, these points are ordered as points in a Euclidian space

We specify a distance concept by adding a metric g, which
contains information about how fast clocks proceed and what
are the distances between points.

A differentiable manifold with a metric as additional structure,
is termed a (pseudo-)Riemannian manifold.
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We now want to assign a metric to spacetime.

Introduce a local Lorentz frame (LLF).
Freefall at point P.
The equivalence principle: all effects of gravitation disappear and
that we locally obtain the metric of the special theory of
relativity
This is the Minkowski metric
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While in special relativity this can be a global coordinate
system, in general relativity (GR) this is only locally possible.

The metric becomes g, — 1
Nuv = dlag (_17+17+17+1) (60)

Define distances using ds? = N dztdz”

For a Riemannian manifold all diagonal elements need to be
positive.

The signature (the sum of the diagonal elements) of the metric
of spacetime is +2 — pseudo-Riemannian.
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In a curved spacetime we cannot define a global Lorentz frame
for which gog = 1as.

However, it is possible to choose coordinates such that in the
vicinity of P this equation is almost valid.

Equivalence principle.
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For such a coordinate system one has

gaﬁ(P) = Tap (61)
0
5 a3(P) =0 (62)
82
Wgaﬁ(P) #0 (63)

The existence of local Lorentz frames expresses that each curved
spacetime has at each point a flat tangent space.

All tensor manipulations occur in this tangent space.
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How to find a measure of the curvature of spacetime?
Drop a single test particle?

Go along in free-fall

Particle at rest (straight line in time direction)

Nothing that betrays curvature

A single particle is insufficient to discover effects of curvature.
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Drop two test particles?

Free-fall observers fall in straight line towards center of Earth
Both particles follow paths that lead to the center of the Earth
Particles move towards each other — Tidal forces

According to Newton both paths interact because of gravitation,
According to Einstein this occurs because spacetime is curved.

Gravitation is a property of the curvature of spacetime
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The Newtonian equations of motion for particles P and @ are
2
dojy (22 (64)
dt* ) (p) 027/ (py

2
)@,
/@ 7 /(@)

with @ being the gravitational potential.

Define £ = (mj)(P) - (a:j)(Q) as the separation between both
particles.

' ; e _
For parallel trajectories one has & = 0.
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Taylor expansion to leading order in 5 gives

d%¢; 0’®
@ (awaﬁ) < (66)
= —&kék (67)

And we define the gravitational tidal tensor &£

0%
gjk = (W) ) (68)

Newtonian geodesic deviation.

Tjonnie Li Intensive course in Physics: Gravitational Waves 48



Dual St s e < Derivatives Curvature G
[o]e] ole [o]e]e} [e]e]e]e] [e]e]e]e]e]e] ]

Consider a particle along a worldline.

This worldline is parameterized with proper time 7 on a clock
that is carried by the particle.

Denote the position of the particle at a point of the worldline
with P(7)
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The velocity U is the tangent vector of the curve and is given by

- dP d
U= = a (69)
For the velocity in the LLF at point P
., dp-adp
2
— 7
v dr? (70)
—dr?
= a2 (71)
= -1, (72)

Because this equation yields a number (scalar), it is valid in
every coordinate system.
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Four-velocity vector has length 1 and points in the time
direction.

Components of the velocity are given by

dz®

U = —. 73
dr (73)
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Consider a particle moving freely

Must move in a straight line (parallel transport its own velocity)

VU =0, (74)
or
d?z® dx* dx¥
a 7). 75
dr? modr dr 0 (7)

which is the expression for a geodesic.

Tjonnie Li Intensive course in Physics: Gravitational Waves 52



Dual Spaces Derivatives Curvature GR

Q0 °] 000 [e]e]e]e] [e]e]e]e]e]e] ]

Suppose we have two
particles that at a certain
instant (7 = 0)
At rest with respect to
each other.
U We define the separation
vector &, which points
=0 from one particle to the
other.
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Demand that the particles are initially (7 = 0) at rest with
respect to each other

Define gsuch that in the LLF of particle P this vector gis
purely spatial

Vﬁg = 0
at point P for 7 = 0. (77)

—

U-£ =0
The second derivative vﬁvﬁf does not vanish.

Geodesics of the particles are forced together or apart
(depending on the metric) when time progresses.
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One can now write

— e

ﬂv[jg = _R(_a U, fa [j)a (78)

with R being the curvature tensor.

In the LLF of particle P at time 7 = 0 one has U° = 1 and
Ui=0.

(VgVgd) = 5 = Rl USPU" = —Rj,e*,  (79)

since the velocity U only has a non-vanishing time component in
the LLF of particle P

while the separation vector & only has spacelike components
k=1,2,3.

ot
a
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In the LLF the geodesic deviation is given by

o%¢3 .
S = ~ Bt (80)

while in Newtonian mechanics we have found that

927
af? = —&re”. (81)

Comparing both expressions yields

0?®

Rjoro = Ejk = -
Y . Oxizk

(82)
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According to Newton one has
V20 =4rGp — 90,06 =it = €7, (83)
we find for the trace of the gravitational tidal tensor
i/
& =4rGp (84)
In analogy one might expect that in GR one has

Ry =4nGp 7 (85)
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Should not depend on the choice of coordinate system!
The equation exist in a special system: the LLF.
Find a relation between tensors.

In the LLF one has Rgogp = 0 en R%, = 0 because of
antisymmetry.

Ryjo = 4nGp — RY o = 4nGp (86)
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Another difficulty: at the left of the equal sign we have two
indices, while at the right there are none.

Thus, one might expect that

Rop = 47GT.s  ? (87)

where T, 3 represents the energy stress tensor, with Tpg = p.

Einstein made this guess already in 1912, but it is incorrect!

Tjonnie Li Intensive course in Physics: Gravitational Waves 59



Dual Spaces Derivatives Curvature GR

Q0 000 [e]e]e]e] [e]e]e]e]e]e] ]

We can show that the Ricci tensor is given by
Ron & 08, gup + non-linear terms. (88)

Proposed equations constitute a set of 10 partial differential
equations for the 10 components of the metric g,z

But we are at liberty to choose the coordinate system where we
are going to work.

Set 4 of the 10 components of gqs

However, we would have 10 partial differential equations for 6
unknowns.

What we need are 6 equations for 6 unknowns
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We can also consider the conservation laws for energy and
momentum.

VT = 0. (89)
But the LHS does not obey this divergence criterion

V3R #£0. (90)
Instead, it follows from the Bianchi identities that

V3G =0 (91)

where G, is defined as
1
Gaﬁ = Raﬁ - §Rga57 (92)
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It seems reasonable to assume that Nature has chosen

SWGTQB.

G*P = (93)

P!
Which are exactly the Einstein equations.

The proportionality factor (87G/c) can be found by taking the
Newtonian limit.
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