SOCIAL MEDIA, GRAPHS AND COMMUNICATION

Paola Monachesi (Utrecht University)

Where do I work?

Utrecht University, Trans 10

Utrecht

Uithof

Where students live

Where is Utrecht?

What do I do?

- Language and social media
 - Dutch corpora and linguistic annotation
 - Extraction and formalization of information from SM to guide the learning process
 - Development of LT based functionalities to improve retrieval of learning material
 - Impact of physical space and online space on communication and information diffusion
 - Interdipendence between social structure and language

Digital social dynamics match those in the physical world: friends are friends in both worlds

but differences:

The number of people to interact with is not limited by distance or time

Social Media

- Many new possibilities for us as users to communicate, interact, find and exchange information
- Many new possibilities for research
- Many new possibilities for enterprise

□ Graph as mathematical models of network structure

Communication Network

Transportation network

Social Networks

Social Networks

- Paths
- □ Cycles
- □ Connectivity
- Connected components
- □ Length of path
- Distance
- Small world phenomenon six degree of separation

Twitter analysis

- SM influence politics and trigger political communication
- Tendency to polarization and segregation
- Risk of not being exposed to diversity: online communities
- Opinions can become more extreme
- Conover et al. (2011) "Political polarization on Twitter". AAAI conference on Weblogs and SM.
- □ Analysis of Twitter data for political discourse

Communities and communication

- Examine networks of political communication
- □ How do we do it?
- Which tools do we use?
- □ Which results do we expect?
- □ Relevance of:
 - Retweets
 - Mention
 - Hashtags (#)

Methodology

- Creation of a network and text data set from Twitter
- Cluster analysis of network and properties of retweet and mentions
- Manual classification of Twitter users to understand the nature of the networks (i.e analysis of users)
- □ Interpretation of the community structures

Methodology

- Network analysis is not enough
- Use of qualitative analysis from social sciences
- Manual annotation of users political trends to get insights into the data

Networks of political discourse (atomic structure)

Network of political discourse Aggregate structure

Multi-mode communication

Observations

- □ Impact of SM on political communication
- □ Retweets: segregation
- Mention: interaction among different opinions
 triggered by political motivated individuals through
 #
- Use of #: expose users to content they would not choose in advance

- Different use of rewteet and mention in Twitter political communication and in the way information flows;
- Not accidental but the result of political people that inject content through an appropriate use of hashtags;
- Ideologically opposed users are the target, they are not going to rebroadcast the tweet but use of mentions

Twitter

- Twitter: microbloging site
- \Box 140 charcters = tweets
- □ Interaction:
 - Retweets: rebroadcast content of other users
 - Mentions: address a user through the public feed (i.e. any Twitter update that contains "@username" anywhere in the body of the Tweet)
 - Hashtags: metadata about a topic or intended audience

Data used

- Analysis based on data collected through the Twitter api during 6 weeks before US congress midterm elections in 2010
- \square 355 million tweets
- Need to make a selection
- □ How?

Identify political content

- \square Find tweets that contain at least one political #
- □ Tag co-occurence discovery
- □ Use of seed tags (i.e. #p2, #tcot)
- \square Identify set of # that co-occur in at least one tweet
- Results ranked using Jaccard Coefficient:

$$\sigma(S,T) = \frac{|S \cap T|}{|S \cup T|}.$$
(1)

□ Threshold of 0.005

Resulting data

- Identify 66 unique #
 (11 excluded ambiguos)
- Total 252300 tweets

Identify political content

Table 1: Hashtags related to #p2, #tcot, or both. Tweets containing any of these were included in our sample.

Just #p2	<pre>#casen #dadt #dc10210 #democrats #du1</pre>					
	<pre>#fem2 #gotv #kysen #lgf #ofa #onenation</pre>					
	<pre>#p2b #pledge #rebelleft #truthout #vote</pre>					
	<pre>#vote2010 #whyimvotingdemocrat #youcut</pre>					
Both	#cspj #dem #dems #desen #gop #hcr					
	#nvsen #obama #ocra #p2 #p21 #phnm					
	<pre>#politics #sgp #tcot #teaparty #tlot</pre>					
	<pre>#topprog #tpp #twisters #votedem</pre>					
Just #tcot	#912 #ampat #ftrs #glennbeck #hhrs					
	#iamthemob #ma04 #mapoli #palin					
	<pre>#palin12 #spwbt #tsot #tweetcongress</pre>					
	#ucot #wethepeople					

Identify political content

Table 2: Hashtags excluded from the analysis due to ambiguous or overly broad meaning.

Excl. from #p2	<pre>#economy #gay #glbt #us #wc #lgbt</pre>				
Excl. from both	#israel #rs				
Excl. from #tcot	<pre>#news #qsn #politicalhumor</pre>				

Political communication Networks

- Construct a network based on the retweets and mention
- $\hfill\square$ Information flowing from A to B
- RN: total ~45k nodes, ~23k non isolated nodes, largest connected component ~18k nodes
- MN: total ~17k nodes, ~10k non isolated nodes, largest connected component ~7k nodes

Community structure

- Community detection: label propagation method
 - Assign arbitrary cluster membership to each node
 - Iteratively update each node's label on the basis of the label that is shared by most of its neighbors
- RN: 2 clusters of users that propagate content within their community
- □ MN: we don't find these clusters

Multi-mode communication

Content analysis

- Clustering based on network properties
- Are these clusters related to the content of the discussions involved?
 - Associate users with a profile vector containing # in own tweets weighted by frequency
 - Compute cosine similarity between pair of users profiles within the same cluster and in different clusters
- RN: users in cluster A have more similar profiles than users in cluster B
- \square MN: this is not the case

Cosine similarities among user profiles

Political polarization

- Do clusters in the retweet network correspond to users with similar political views?
- Qualitative content analysis
- Identify whether the tweet of a given user expresses
 a left, right or undecidable identity
- □ Author annotates 1000 random users
- Non author annotates 200 from the set of 1000 users
- Check agreement between annotation

Annotation Agreement

Kappa coefficient

$$\kappa = \frac{P(\alpha) - P(\epsilon)}{1 - P(\epsilon)}$$

- P(e) = expected rate of random agreement given the relative frequency of each class label
- \square K=0.80 (left wing)
- \Box K= 0.82 (right wing)
- \square K= 0.42 (undecidable)

Political divisions

Table 4: Partisan composition and size of network clusters as determined by manual inspection of 1,000 random user profiles.

Network	Clust.	Left	Right	Undec.	Nodes
Retweet	Α	1.19%	93.4%	5.36%	7,115
	В	80.1%	8.71%	11.1%	11,355
Mention	Α	39.5%	52.2%	8.18%	7,021
	В	9.52%	85.7%	4.76%	154

Cross ideological interaction

- Users are likely to interact with other with whom they agree (retweet)
- More cross ideological interaction in the mention network

Content injection

- Use of # that target different politically opposed audiences
- □ Expose users to different information
- □ No retweet, but use of mention to reply

Use of tags by communities

Rank	Hashtag	Left	Right	Valence
1	#tcot	2,949	13,574	0.384
2	#p2	6,269	3,153	-0.605
3	<pre>#teaparty</pre>	1,261	5,368	0.350
4	#tlot	725	2,156	0.184
5	#gop	736	1,951	0.128
6	#sgp	226	2,563	0.694
7	#ocra	434	1,649	0.323
8	#dems	953	194	-0.818
9	#twisters	41	990	0.843
10	#palin	200	838	0.343
	Total	26,341	53,880	

Example

User A: Please follow @Username for an outstanding progressive voice! #p2 #dems #prog #democrats #tcot

User B: Couple Aborts Twin Boys For Being Wrong Gender..http://bit.ly/xyz #tcot #hhrs #christian #tlot #teaparty #sgp #p2 #prolife

Political valence

 It encodes the relative prominence of a tag among left and right wing users

$$V(t) = 2 \frac{N(t,R)/N(R)}{[N(t,L)/N(L)] + [N(t,R)/N(R)]} - 1 \quad (4)$$

- N(t,R) = number of occurences of tag (t) produced by right wing users
- \square N(t,L) = same for left wing users
- N(R) = total number of occurrences of all tags in tweets by right wing users
- \square N(L) same for left wing users
- Constants used to bound the measure between -1 for tag used by the left and +1 for tag used by the right

Relevance of paper

Analysis

- Verification of hypothesis possible
- Identification of different uses of communication means (retweet, mention, #)
- Information sharing: within the same community (retweet)
- Inetgrate network analysis with content analysis

Relevance of paper

- Methodology
 - Data extraction (co-occurance of #)
 - Network construction
 - Clustering analysis: community detection
 - Content analysis: # analysis to identify similarity of users within cluster
 - Qualitative content analysis: annotation + classification to identify left and rightwing users

Can we use this methodology to discover communication behavior in other communities?
 Which ones?

Relevant resources

- \square The paper:
- http://truthy.indiana.edu/site_media/pdfs/ conover_icwsm2011_polarization.pdf
- \Box Talk by the author:
 - http://videolectures.net/
 - icwsm2011_conover_polarization/
- □ The system used and data:
- http://truthy.indiana.edu/