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A universal state and its relaxation mechanisms of
long-range interacting polygons
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Using polygonal magnetic particles, we conduct experiments to explore the space-filling

properties of anisotropic blocks with long-range interactions. In contrast to previous studies,

we obtain the surprising finding that our systems’ structures do not depend on the shape of

building blocks: a single state, the hexagonal plastic crystal, appears as a universal attractor

for a wide range of different polygons. This robust particle-shape independency appears as

the interactions go beyond nearest neighbors. Particle shape plays an essential role in system

relaxation, and determines the basic relaxation dynamics through a microscopic control

parameter, internal roughness, produced by particle vertices. Thus our study reveals a new

pattern-forming paradigm, in which particle shape plays little role in the static structure but

determines the essential relaxation dynamics. Due to the ubiquity of long-range interactions

and anisotropic building blocks, our discovery may shed new light on diverse problems

involving structure formation, self-assembly, and packing.
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How to fill up space with identical building blocks? Across
different research fields, this classical question attracts the
attention of mathematicians, physicists, chemists, and

materials scientists. At first glance, it may seem to be a simple
issue of fitting the local feature of individual blocks into the global
space. However, in practice this issue is the basis for realizing
desired solid structures in condensed matter physics, achieving
novel self-assembly structures in materials science, and even
understanding the formation of complex living colonies and
assemblies in biological research1–3.

Among many control parameters, the shape of building blocks
is of fundamental importance: it can influence the packing effi-
ciency as demonstrated by the famous experiment of packing
ellipsoidal M&M’s candies versus its spherical counterparts4, it
may produce unique frustration structures as illustrated by
depositing special ‘kite’ tiles under gravity5, and it could even help
to realize highly-unusual phases such as quasicrystals with
specially-designed blocks6.

Another important factor is the interactions among particles:
by coupling fine-tuned interactions with carefully-designed par-
ticle shapes, different building blocks may assemble into various
types of structures including liquid and plastic crystals7–9,
superlattices10–12, quasi-crystals6,13,14, and glass5. Besides static
structures, the coupling between shape and interaction also
strongly influences dynamic responses15–17, and determines the
system relaxation properties such as plasticity, friction, lubrica-
tion, and melting behaviors18–27.

Despite wide variations, most previous studies however share
one common feature: the interactions are short-ranged and the
building blocks can only influence their nearest neighbors. As a
result, the entropic effect due to geometric constraints from
neighboring blocks plays an essential role in structure forma-
tion28–30, which has led to amazing systems such as directional
bonding and chiral structures31–35, open lattices36,37, and clath-
rate structures38. However, the opposite regime of coupling
long-range interactions with anisotropic building blocks remains
largely unexplored (note that ‘long-range interactions’ in this
work mean the interactions going beyond the nearest neighbors).
In this open regime dominated by non-entropic effect, are there
any new physics, novel structures and unconventional material
properties? This fundamental question remains to be addressed
from both experimental and theoretical fronts.

In general, numerous studies have demonstrated that when the
building blocks change their shapes, the system structures will
vary correspondingly, with no universal state for different
shapes39–42. Taking regular polygons as the simplest anisotropic
model system, it is natural to expect different packing structures
corresponding to different polygon shapes, for example the
square lattice corresponding to square blocks and the triatic
phases43 corresponding to triangular particles. System structure
depending on particle shape seems to be a common sense in the
field.

Strikingly, however, in this work we demonstrate that such a
‘common sense’ is actually due to the short-range interactions
only between nearest neighbors. Once the interactions become
long range and more neighbors get involved, we uncover a uni-
versal state—the hexagonal plastic crystal—for various polygonal
systems. Across a broad density range, this state exists for hexa-
gons, pentagons, squares and triangles, demonstrating robust
shape independency in the long-range interaction regime.
Although making little impact on the static structure, the particle
shape however strongly influences the dynamic relaxations: under
external perturbations different polygons relax distinctively,
relying predominantly on the ‘internal roughness’ produced by
polygon vertices (i.e., particle shapes). In particular, a novel
relaxation mechanism via defect loop, which typically appears in

quasicrystals44, surprisingly occurs in our crystal structure of
triangles. Thus our study reveals a fundamentally new paradigm,
in which particle shape plays little role in the static structure but
determines the essential relaxation dynamics. Due to the ubiquity
of long-range interactions and anisotropic building blocks, our
discovery may shed new light on diverse problems involving
structure formation, self-assembly, and packing45,46.

Results
Experimental design. One major reason for the poor under-
standing in the long-range and anisotropic interaction regime is
the lack of a good experimental platform for single-particle-level
measurements: molecules are typically anisotropic but too small
to track individually, and colloids are large enough to visualize
but difficult to achieve long-range anisotropic interactions47–49.
To tackle this issue, we construct a two-dimensional (2D) system
composed by hundreds to thousands of millimeter-sized mag-
netic polygon particles. This 2D system can be perturbed by a
magnetic plate underneath, which moves back and forth parallel
to the system plane, and a stable state can be achieved after tens
to hundreds of such perturbations (see ‘Experimental Details’ in
Methods). The magnetic repulsion among polygon particles can
extend beyond multiple particle size and realize the long-range
anisotropic interaction (see Supplementary Fig. 2). Because the
interaction is long range, the number density of a ‘condensed
state’, in which particles can ‘feel’ each other, could vary by 20
times. Such a large variation in density has rarely been achieved
in previous short-range interacting systems. We also emphasize
that particles can never contact each other directly throughout
our density range, to avoid the strong contact interaction dom-
inating the soft long-range repulsion, which would then resemble
the short-range interaction regime extensively studied before (See
Supplementary Fig. 4 right column for the highest density
situations).

A universal state formed by particle centers. To obtain a sys-
tematic understanding on the effect of particle shape, we gradu-
ally break up the particle’s rotational symmetry: starting from
discs, the particles are systematically varied into hexagons, pen-
tagons, squares and triangles, as shown in Fig. 1a inset. Behaviors
can be categorized into three typical groups: the high-symmetry
group (discs and hexagons), the intermediate-symmetry group
(pentagons and squares), and the low-symmetry group (trian-
gles). For each group, we pick one representative particle shape
and demonstrate the system’s overall order at different effective
density φ, in Fig. 1a. The effective density φ is defined in such a
way that at about φ = 1, the mutual repulsion just overcomes the
friction and particles start to ‘feel’ each other (more experimental
details are shown in Methods). The system’s overall order is
quantified by the global six-fold bond orientational order para-
meter |Ψ6| (see Methods), calculated from all particle centers. |Ψ6|
approaches zero for a totally disordered state and reaches unity
for a perfect hexagonal crystal. Clearly, at low densities the system
is quite disordered with |Ψ6| ~ 0.1, however |Ψ6| rises sharply
around φ= 2 and reaches values close to unity at higher densities.
Over a broad density range of 5 < φ < 20, this highly-ordered
structure remains as a universal stable state for all polygon shapes
(see Supplementary Note 1 and Supplementary Figs. 5–7 for the
other shapes).

Among all three groups, the high-symmetry group behaves
almost identical to discs which is well understood. Therefore our
study mainly focuses on the intermediate and low symmetry
situations, represented by the square and triangle systems,
respectively. We directly visualize their high-density ordered
state in Fig. 1b, c, with all particle centers connected for a better
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illustration: clearly the hexagonal crystalline symmetry univer-
sally appears in both systems. However, because the orientations
of polygons are not identical, this structure is actually a hexagonal
plastic crystal. As the rotational symmetry is lowered, the
triangular particles tend to produce more 5–7 pair dislocations
(labeled in red in Fig. 1c), which make the system more
disordered with |Ψ6| values smaller than squares. In Fig. 1d, e we
plot the 2D Fourier transform of particle centers, which once
again confirms a nice hexagonal symmetry in both systems.

Regardless of polygon shapes, the hexagonal plastic crystal
becomes a universal stable state over a broad density range. This
new phenomenon significantly deviates from short-range inter-
action systems, in which the stable state depends sensitively on
particle shapes. What causes this new phenomenon of shape
independency? One simple explanation is that the particles are far

from each other instead of in direct contact, and thus the
anisotropic effect is too weak to manifest itself. Consequently
the particles behave just like the isotropic discs and form the
straightforward hexagonal crystal. However, we exclude this
trivial possibility by measuring the interaction between polygon
pairs aligned with different orientations, and confirm that the
interaction is quite anisotropic throughout the density range of
the ordered state (see Supplementary Fig. 2).

The true mechanism is revealed by a series of numerical
simulations, in which we systematically vary the cut-off distance
of interaction. To make a direct comparison, simulations and
experiments have the same interaction profiles except that in
simulations we set a cut-off distance, RC, beyond which the
interaction is identically zero. When RC is short and particles can
only ‘feel’ their nearest neighbors, the stable structures depend
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Fig. 1 A universal state in different polygonal systems. a The global bond orientational order parameter |Ψ6| calculated from all particle centers versus
particle density φ for high-symmetry (discs), intermediate symmetry (squares) and low-symmetry (triangles) particles. For all three groups, the system is
disordered at low densities but ordered at high densities. b and c a universal hexagonal state is formed by particle centers in both square and triangle
systems. We connect all particle centers to give a better illustration. The effective area densities are φ = 16.8 and φ = 14.2, respectively. d, e Fourier
transform of particle centers in c and d. The length scale a is the average particle distance. f numerical simulations of squares (φ= 17.6) and triangles (φ=
15) illustrate that the states are shape dependent at a low cut-off distance but shape-independent at a high cut-off distance. Upper panels: square particles
produce a square lattice at low cut-off distance RC= 3 (the unit of RC is the disc particle’s diameter, i.e., 6 mm); while a hexagonal state appears at high cut-
off distance RC= 6. Lower panels: triangle particles exhibit a glassy state at RC= 3 but a hexagonal state at RC= 6. g square and triangle particle’s phase
diagrams from simulations. At large enough RC, a hexagonal state universally appears. The lower-left blank area is the region at and below the jamming
point, where the system starts to unjam and fall apart
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sensitively on particle shapes: a square lattice corresponds to
square particles and a disordered glassy structure corresponds to
triangles, as shown in Fig. 1f at the small cut-off distance RC= 3
(the unit of RC is the disc particle’s diameter, 6 mm, and also note
that triangles do not exhibit the triatic structures observed in
ref. 43). However, once the cut-off distance reaches large enough
value of RC= 6, the hexagonal plastic crystal becomes universally
preferred, in both square and triangle systems. This clearly
indicates that it is the long-range interaction which prefers large
coordination number and produces the universal hexagonal state.
Please note that the effective densities in Fig. 1f are φ= 17.6 for
squares and φ= 15 for triangles.

We further apply this simulation across a broad density range
and summarize all results with two phase diagrams in Fig. 1g, for
squares and triangles, respectively. When the cut-off distance Rc is
small, the stable states depend on shape and exhibit very poor 6-
fold symmetry; however once the cut-off distance is large enough,
the hexagonal plastic crystal universally appears. This is true for a
broad density range, confirming the robust shape independency
experimentally observed. In addition, simulations further reveal
that adding or removing the long-range interaction tail only
changes the total system energy by a small fraction around 15%,
yet it completely eliminates the shape dependency, significantly
changes the phase space, and makes the plastic crystal a universal
state for various polygons.

Distinct structures formed by particle vertices. Experiments and
simulations demonstrate that polygon shape makes very slight
influence on the static structure of particle centers in the long-
range interaction regime. Consequently, we may naturally ask:
what is the role of shape in this regime then? Further investigation
reveals that shape strongly influences the arrangement of particle
vertices and determines the dynamic responses. In Fig. 2a, b we
demonstrate the vertex structures of square and triangle systems,
with the nearby vertices connected for a better illustration.
Strikingly, despite that the raw images are exactly the same as
Fig. 1b, c, the patterns formed by vertices give a completely dif-
ferent impression without any obvious hexagonal symmetry.

More specifically, the square vertices in Fig. 2a form straight
stripes, due to the fact that most neighboring particles orient in
the same direction and align their edges along a certain lattice
line. By contrast, triangles form a much more complicated and
random pattern, as demonstrated in Fig. 2b. A careful inspection
reveals four typical neighboring motifs that are relatively more
preferred, as shown in the right panel of Fig. 2b. For motifs 1 and
2, two neighbors have identical orientations indicated by the
arrow lines; for motifs 3 and 4, their orientations differ by 60°,
which however brings the feature of parallel adjacent edges. This
feature gets more and more preferred at higher densities. Statistics
further shows that the four motifs are only slightly preferred over
other possible patterns, revealing a strong frustration in the vertex
arrangement of triangle particles (see Supplementary Note 2 and
Supplementary Fig. 8).

To directly visualize the symmetry of vertices, we plot their 2D
Fourier transform in Fig. 2c, d. The square vertices exhibit a
strong 6-fold symmetry, due to their good alignment with the
hexagonal lattice lines. However, an unusual feature appears in
the triangle system: the second shell around ka/2π= 2 (a is the
average particle distance) looks no longer like a hexagon but more
like a dodecagon, which suggests a 12-fold symmetry. Note that
ka/2π= 2 corresponds to the typical distance between two
adjacent vertices.

To probe the origin of this 12-fold symmetry, we collect all
possible connections between two adjacent vertices, put one end
on a common origin, and plot the other end as one bright spot in

Fig. 2e. The brightness of this image thus directly reflects the
probability density of adjacent vertices collected from all
configurations, and the image exhibits an obvious 6-fold
symmetry. However, once the image is Fourier transformed into
k space in Fig. 2f, a 12-fold symmetry clearly appears around ka/
2π= 2. This feature is quite similar to the one in Fig. 2d and thus
explains its origin: for triangle particles the neighboring vertices
arrange cooperatively to form 2 sets of 6-fold symmetry, which
combine coherently and produce a 12-fold symmetry. More
experiments further reveal that such a cooperation increases with
density: the feature grows more and more pronounced in the
density range of 13 < φ < 20 but becomes weaker below φ ~ 13
(see Supplementary Note 5 and Supplementary Fig. 13).

Particle shape determines system relaxation. Apparently dif-
ferent particle shapes produce different vertex structures, but how
does this difference affect system properties? We demonstrate
that it influences the basic relaxation dynamics and makes sys-
tems respond distinctively under external perturbations. Because
ordered structures normally relax through defect dynamics, we
thus probe the movements of defects, typically 5–7 pair disloca-
tions, at single-particle level (see Supplementary Movie 1). In
Fig. 3a–d, we illustrate the typical relaxation dynamics in the
same samples as the ones shown in Figs. 1 and 2. In the square
system of Fig. 3a, we first identify a typical 5–7 pair dislocation as
labeled by the two polygons, and then analyze its motion during
three consecutive frames. The color of each particle represents its
local order parameter |Ψ6,i| and clearly particles are poorly
ordered around the dislocation. During the three frames, the
dislocation pair first moves a large and then a small step in frame
t+ 1 and t+ 2, respectively, along the same lattice line. This
relaxation is a typical dislocation gliding event.

To illustrate the underlying dynamics of this gliding, we plot
the displacement field of every particle in Fig. 3b (also see
Supplementary Movie 2), with the dislocation pair labeled by two
colored squares. The field R(t) represents the displacement field
between frame t and t+ 1. Clearly large displacements occur
around the same lattice line of the dislocation gliding, suggesting
that a local excitation along this line produces the gliding event.
Moreover, the features of global swirls and large displacements
agree well with the soft modes calculated from covariance matrix
(see Supplementary Figs. 14a and 15a), indicating that the soft
modes produced by soft defect spots are responsible for this
excitation (see Supplementary Note 6). This result agrees well
with the previous discoveries in colloidal and hard granular
systems50–52, except that we now expand this powerful soft-mode
mechanism into anisotropic and long-range interacting systems.

In contrast to the square system, totally different relaxation
dynamics appears in the triangle system: dislocation gliding no
longer appears in Fig. 3c; instead a loop of defects forms and the
system relaxes through the creation and annihilation of this loop
(also see Supplementary Movie 3). Such kind of defect-loop
relaxation typically appears in quasicrystals44 but surprisingly it
becomes the major relaxation approach in our triangle systems.

To uncover the mechanism of this relaxation, we again plot the
displacement field in Fig. 3d and find large displacements near
the defect loop. Similar as the square system, there is a good
agreement between the displacement field and the soft modes (see
Supplementary Fig. 15b), indicating the soft modes as the
underlying relaxation mechanism. More interestingly, a careful
inspection further reveals that motif 3 structures frequently
appear near the defect loops, and correlate closely with the loops’
swirling displacement field, as indicated by the red circuits in
Fig. 3d (the solid parts indicate motif 3). This finding suggests
motif 3 as a structural basis for the defect loop relaxation.
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Why the motif 3 structure is so special for defect loop
relaxation? More fundamentally, at the particle level what
controls relaxation behaviors and produces two distinct relaxa-
tion mechanisms, i.e., dislocation gliding vs. defect loop? We
illustrate this fundamental issue by defining a microscopic
parameter, the ‘internal roughness’, Ra, at single-particle level.
As shown in Fig. 3e: we first identify the midpoints of
neighboring vertices, and then link these midpoints to form a
zigzag line. The standard deviation, σ, of this zigzag line describes
the internal roughness produced by particle vertices. We further
renormalize σ with the average particle distance a and obtain the
dimensionless internal roughness, Ra= σ/a. Because Ra is
dimensionless, it can be generally defined and applied in various
systems beyond our model system.

As shown in the left panel of Fig. 3e, squares apparently
produce a very small roughness around Ra= 0.015. By contrast,
triangles generate a much larger roughness, Ra= 0.08 to 0.1, as
illustrated in the right panel. However, Ra reduces significantly
(over 50%) to 0.04 along a curved path nearby, which is exactly
along a motif 3 structure and a defect loop forms right at this
location. Therefore, our data suggest that motif 3 structures can
effectively reduce Ra, facilitate defect movements along them, and
provide a structural basis for defect loop relaxation.

To summarize, our results suggest that small internal roughness
is essential for the movements of dislocations. When Ra is small
such as in square systems, dislocations tend to glide along lattice
lines; however, when Ra is too large for dislocations to glide along
(such as in triangle systems), the structure will have to relax through
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defect loops. Even the formation of defect loops requires small
roughness, which is realized by special structures such as the motif
3 structures. This internal-roughness picture successfully explains
the two observed relaxation mechanisms at single-particle level.

To test the validity and robustness of this picture, across a
broad density range we measure the internal roughness of
triangle, square, and pentagon systems. We compare their
system’s overall Ra averaged over all lattice lines in Fig. 3f: the
square and pentagon systems are relatively smooth (i.e., with
small Ra) and thus relax through dislocation glidings; however the
triangle systems are quite rough and mainly relax via defect loops.
Moreover, our data further suggest a critical roughness value,
Ra~ 0.04, below which glidings dominate and above which defect
loops take over. Even for large-roughness systems that relax via
defect loops, we still need the special structure of motif 3 to make
Ra~ 0.04, which enables the relaxation to proceed. Based on these
observations, we propose that making Ra below a critical value
could be a general requirement for plastic relaxations, although
the specific critical value may vary with system and condition.

Discussion
In conclusion, we have experimentally explored the new regime
of packing long-range interacting and anisotropic building blocks.
Although particles have various polygonal shapes, different sys-
tems however reach a universal state, the hexagonal plastic
crystal. This state originates from the long-range interaction
going beyond the nearest neighbors. Despite its slight influence
on the static structure, the particle shape strongly affects the
system internal roughness, and determines the relaxation
dynamics. Our data further suggest that defects prefer to move
along small-roughness paths, and may only relax under a certain
critical roughness regardless of in dislocation gliding or defect
loop relaxation. This finding may provide a fundamental picture
for the relaxation of plastic crystals, which widely appear in
square ice and spin-frustrated lattices53. It could even extend to
more disordered systems such as metallic glasses, and help to
explain their high rigidity and low plasticity: because of the really
large Ra values throughout the glassy system, the soft defect spots
in metallic glasses are essentially locked in space and very difficult
to move and relax, either via dislocation gliding or defect loop.
Therefore, our analysis may help to explain why disordered
metallic glasses can achieve higher rigidity and lower plasticity
than their perfectly-ordered crystalline counterparts.

Methods
Experimental details. Our system is made up of Nd2Fe14B magnetic particles with
various shapes: disc, hexagon, pentagon, square and triangle, and all particles are
coated with a smooth nickel layer. We show the top and side views of the particles
in Supplementary Fig. 1. In the x–y plane, all polygons have a center-to-vertex
distance 3.00 ± 0.03 mm and the discs have a radius of 3.00 ± 0.03 mm; in the z
direction, all particles have the thickness 2.97 ± 0.03 mm. The particles have a
strong permanent magnetization along the z direction, with a maximum magnetic
field B ~ 0.5 T at the magnetic poles. In the x-y plane, the anisotropic magnetic field
can extend its influence to large distances of multiple particle size. Using a force
sensor, we can directly measure the repulsive interaction force between two par-
ticles, with different relative orientations (e.g., edge-to-edge, edge-to-tip, and tip-to-
tip), as shown in Supplementary Fig. 2a, b for square and triangle particles,
respectively. The force profile is close to a power-law, F ~ r−4.2 (or an interaction
potential U(r) ~ r−3.2). Significant anisotropy can be observed at small and medium
r. With these magnetic particles, we can study single-particle behaviors in systems
with long-range and anisotropic interactions.

We confine the particles between two glass plates to form a single-layer 2D
system. The thickness of the spacer is carefully controlled at 3.12 ± 0.04 mm, which
ensures that the particles do not tilt significantly (the tilting angle is less than 5
degrees) in all experiments. To provide external excitations, we use a plate
with randomly pinned magnets slowly moving back and forth under the 2D
system, with an amplitude A= 420 mm and period T= 4.9 s, as illustrated in
Supplementary Fig. 3 and Supplementary Movie 1. The perturbation strength can
be controlled by the distance H between the perturbation plate and the system
confining box. After each set of perturbations (50 cycles), the perturbation plate is

removed, and the system relaxes into a new mechanical equilibrium configuration,
which sits at one specific local minimum of the potential energy landscape. We
record plenty of such local minima configurations (typically more than 500) and
probe their transition kinetics.

The friction coefficient in our system is quite small, 0.15 ± 0.03. Thus the
repulsive force between two particles can overcome the friction at very large
distances, typically above 10 particle radii. Therefore, for each shape we define an
effective radius, re, as the exact distance at which the repulsive force matches the
friction and two particles start to ‘feel’ each other. Based on re, we then define the
effective density, φ ¼ Nπr2e =S, with N the particle number and S the total area of
the system. This definition essentially treats each particle as a soft disc with the
radius re and at φ = 1 they start to feel each other. Because of the long-range
interaction, we can vary the effective density φ over a broad range from 1 to about
20 (particle number from about 100 to 2000), throughout which particles can still
feel and interact with each other. This has rarely been achieved for short-range
interactions. We average the order parameters and correlation functions over 20 to
25 independent experiments, and the particles at boundary are not included in the
results. Some typical configurations from low to high densities are illustrated in
Supplementary Fig. 4, with the top row showing the square systems and the bottom
row showing the triangle systems. Note that the confining box is hexagonal, which
minimizes the boundary effect for a hexagonal plastic crystal (See Supplementary
Note 4 and Supplementary Fig. 12 for the discussion of boundary effect).

To obtain a systematic understanding, we gradually break up the rotational
symmetry and perform extensive experiments on disc, hexagon, pentagon, square
and triangle systems. Their behaviors fall into three categories: high-symmetry
(disc and hexagon), intermediate-symmetry (pentagon and square) and low-
symmetry (triangle). The high-symmetry situation is well understood and our
study focuses on the intermediate and low symmetries. In the main text, we mainly
show squares and triangles. For other shapes, hexagons behave almost identical to
discs which are well understood, and the pentagon system is similar to the square
system but with larger frustrations. The results of pentagon system are shown in
Supplementary Note 3 and Supplementary Figs. 9–11.

Calculation of |Ψ6|. The global bond orientational order |Ψ6| is defined as

jΨ6j ¼
P

i ψ6;i

D E
, where ψ6;i ¼ 1

Ni

P
j e

i6αij with αij being the angle of the jth bond

with respect to the x axis and Ni the number of neighbors of particle i.

Data availability
The primary data that support the findings of this study are available from the
corresponding authors upon request (Email: xuleixu@cuhk.edu.hk or tanpeng@fudan.
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Code availability
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