RJ [U5932'Short experimental projects I Department qh'Rj { ukeu The Chinese University of Hong Kong, Hong Kong

Topic: Heat Engine & Peltier Device

designed by

H.K. Wong

(September 2004, revised on January 21, 2011 & June 1, 2011)

Topics you should know first:

Seebeck effect, Peltier effect & heat engine efficiency.

Objectives:

- 1. Understand the principle of a heat engine and a heat pump (Peltier cooler).
- 2. To measure the heat engine efficiency properly.
- 3. To measure Seebeck coefficients as a function of temperature.

Check-list for the project:

- 1. Try to understand the structure of the Peltier device.
- 2. Read references 1 & 2. Work out the required equations for the calculation of heat engine efficiency.
- 3. Do all five experiments listed in Ref. 2. You can work on Exp. 1 & 2 at the same time. Get more data for Exp. 2. Do analysis as suggested in Ref. 1 & 2. Plot graphs like those in Ref. 1.
- 4. Make a Type T thermocouple, attach it to the Peltier device and check the accuracy of the thermistor by plotting thermocouple temperature vs. thermistor reading.

References:

- 1. V.K. Gupta et. al., "Experiment to verify the second law of thermodynamics using a thermoelectric device", Am. J. Phys. <u>52</u>, 625 (1984) (available through UL).*
- 2. Manual for Thermal Efficiency Apparatus (PASCO model TD-8564)* (available on Course Web Page).
- 3. M. Cvahte & J. Strnad, "A thermoelectric experiment in support of the second law", European Journal of Physics, vol. 9, pp.11-17 (1988)

Reference folder is available.

* See Notes on next page.

Notes on Peltier device as a heat engine

(A) The two configurations are identical:

(B) Comparison of symbols in Ref. 1 & Ref. 2:

	Ref. 1	Ref. 2
Load resistance (~ 1 Ω)	R_L	R
Internal resistance of device	R	r
Current through the load resistor	Ι	$I_{\scriptscriptstyle W}$
Voltage across device with $I \neq 0$	V	$V_{\scriptscriptstyle W} = I_{\scriptscriptstyle W} R$
Work done by device	VI	$P_{\scriptscriptstyle W}=I_{\scriptscriptstyle W}^2R$
Seeback emf (voltage across device with $I = 0$ (open circuit))	E	V_s
	E = V + IR	$V_s = I_W R + I_W r$
Input power (close circuit)	P_1	$P_H = V_H I_H$
Input power (open circuit)	P_2	$P_{H(open)}$
Total work done	EI	$P_{W}' = V_{s}I_{W} = \frac{V_{W}^{2}}{R} + I_{W}^{2}r$
efficiency	η	e
	$\eta = \frac{EI}{P_1 - P_2 + \frac{1}{2}I(E - V)}$	$e = \frac{P'_{W}}{P'_{H}} = \frac{\frac{V_{W}^{2}}{R} + I_{W}^{2}r}{P_{H} - P_{H(open)}} = \frac{\frac{V_{W}^{2}}{R} + (\frac{V_{W}}{R})^{2}r}{P_{H} - P_{H(open)}}$
Temperature of hot reservoir	$T_{\scriptscriptstyle h}$	T_H
Temperature of cold reservoir	T_c	T_c

Typo errors in Ref. 2 (PASCO manual):

- 1. On. p.6, R_1 should be R.
- 2. On p.6, $V_s = IR + Ir$ should be $V_s = I_W R + I_W r$.
- 3. On p.16, $r = \left(\frac{V_P V_W}{V_W}\right) R$ should be $r = \left(\frac{V_S V_W}{V_W}\right) R$.