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In quantum information processing, it is vital to protect the coherence of qubits in noisy environ-
ments. Dynamical decoupling (DD), which applies a sequence of flips on qubits and averages the
qubit-environment coupling to zero, is a promising strategy compatible with other desired func-
tionalities, such as quantum gates. Here, we review the recent progresses in theories of dynamical
decoupling and experimental demonstrations. We give both semiclassical and quantum descriptions
of the qubit decoherence due to coupling to noisy environments. Based on the quantum picture, a
geometrical interpretation of DD is presented. The periodic Carr–Purcell–Meiboom–Gill DD and
the concatenated DD are reviewed, followed by a detailed exploration of the recently developed
Uhrig DD, which employs the least number of pulses in an unequally spaced sequence to suppress
the qubit–environment coupling to a given order of the evolution time. Some new developments and
perspectives are also discussed.
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1 Coherence and decoherence

The power of quantum information processing [1], the
quantum parallelism, comes from the superposition prin-
ciple of quantum mechanics. The building block of quan-
tum technology, a quantum bit (qubit), is a two-level
system that can be identified as a spin-1/2 with states
|↑〉 and |↓〉. The ability of the qubit to be in a coherent
superposition of |↑〉 and |↓〉,

|Ψ〉 = cos
θ

2
e−iϕ/2 |↑〉+ sin

θ

2
eiϕ/2 |↓〉 (1)

enables the parallel processing of many pieces of classical
information. In order for this idea to work, the qubit has
to faithfully maintain its quantum state. Not only the
populations cos2(θ/2) and sin2(θ/2) in the two states |↑〉
and |↓〉, but also the relative phase e−iϕ between |↑〉 and
|↓〉 should be kept at certain values. Unavoidable cou-
plings between the qubit and the environment (hereafter
referred to as bath) spoil the quantum state by introduc-
ing uncontrolled evolution of the qubit. The populations
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and phases are randomized, and the qubit coherence is
lost. This decoherence problem is one of the most serious
obstacles in the roads toward scalable quantum informa-
tion processing [2].

The population randomization (i.e., relaxation) pro-
cess involves energy dissipation and therefore is sub-
jected to the energy conservation condition. Thus, it
can be suppressed by increasing the spin splitting of the
qubit. In contrast, the phase randomization (i.e., pure
dephasing) is a more serious issue, since this process does
not involve energy dissipation.

1.1 Semiclassical picture of decoherence

In the semiclassical picture, the pure dephasing of a qubit
or a spin-1/2 is caused by the fluctuation of a local classi-
cal field fixed at a given direction [3, 4]. The Hamiltonian
of the qubit in the external field including the random
component is

Ĥqubit =
[ω0

2
+ Z(t)

]
σ̂z (2)

where σ̂z is the Pauli matrix for the qubit, ω0 is the
Zeeman splitting under the external field, and 2Z(t) is
the random field resulting from the interaction with the
bath. Let us consider a qubit initially in a coherent su-
perposition state

|ψ(0)〉 = C+ |↑〉+ C− |↓〉 (3)

corresponding to a pure state density matrix

ρ̂(0) =

(
|C+|2 C+C∗−
C∗+C− |C−|2

)
(4)

in the basis |↑〉 , |↓〉. At the end of the evolution, a ran-
dom relative phase ϕ(τ) = 2

∫ τ

0
Z(t)dt between |↑〉 and

|↓〉 is accumulated in the qubit wave function

|ψ(τ)〉 = C+e−iϕ(τ)/2 |↑〉+ C−eiϕ(τ)/2 |↓〉 (5)

and the off-diagonal coherence of the resulting density
matrix

ρ̂(τ) =

(
|C+|2 C+C∗−e−iϕ(τ)

C∗+C−eiϕ(τ) |C−|2
)

(6)

becomes random. The ensemble average over all possi-
ble realizations of the random noise Z(t) gives the de-
cay of the off-diagonal density matrix elements, i.e., the
decoherence of the qubit (or the depolarization of the
spin-1/2 in the plane perpendicular to the external field).
The resulting qubit state is a mixed state with vanishing
off-diagonal coherence, since the noise-averaged quantity
〈e−iϕ(τ)〉 vanishes in the long time limit.

1.2 Quantum theory of decoherence

In the quantum picture [5], the decoherence of a qubit
results from the qubit–bath entanglement, which is es-
tablished during the evolution of the interacting qubit–
bath system. The general pure dephasing Hamiltonian
has the form

Ĥpd = Ĉ + σ̂z ⊗ Ẑ (7)

where Ĉ is the interaction within the bath, and Ẑ is
the bath operator representing the quantum field on the
qubit resulting from the qubit–bath interaction. Sup-
pose the initial state of the qubit–bath system has the
form |Ψ(0)〉 = |ψ(0)〉 ⊗ |J〉, i.e., a direct product of the
qubit state |ψ(0)〉 = C+ |↑〉 + C− |↓〉 and the bath state
|J〉. At the end of the evolution, an entangled state is
established as

|Ψ(τ)〉 = C+ |+〉 ⊗ e−i(Ĉ+Ẑ)τ |J〉
+C− |−〉 ⊗ e−i(Ĉ−Ẑ)τ |J〉

≡ C+ |+〉 ⊗
∣∣J (+)(τ)

〉
+ C− |−〉 ⊗

∣∣J (−)(τ)
〉

(8)

and the off-diagonal coherence of the reduced density
matrix of the qubit becomes bath-state dependent:

ρ̂(τ) =

(
|C+|2 C+C∗−

〈
J (−)(τ)|J (+)(τ)

〉

C∗+C−
〈
J (+)(τ)|J (−)(τ)

〉 |C−|2
)

(9)

The off-diagonal qubit coherence is reduced when the
bath state overlap decreases

LJ(τ) ≡ 〈J (−)(τ)|J (+)(τ)〉
= 〈J |ei(Ĉ−Ẑ)τe−i(Ĉ+Ẑ)τ |J〉 (10)

A transparent physical meaning of this formula is that
the coherence of the qubit decreases when the distin-
guishability of the bath states increases, or the quantum-
ness of the qubit decays when it is gradually “measured”
by the environment.

The decoherence in Eq. (10) is caused by the quan-

tum fluctuation of the local field for a single bath state
|J〉. At finite temperature, the bath itself is in a ther-
mal ensemble as

∑
J PJ |J〉〈J |. Ensemble average over

the distribution of the initial bath states |J〉 causes ad-
ditional dephasing due to the thermal fluctuation, which
is referred to as inhomogeneous broadening in literature
[6].

As an example, in a confined solid-state environment,
such as a quantum dot, the most relevant source of de-
coherence at low temperature (a few Kelvin) for an elec-
tron spin is the hyperfine interaction with the lattice nu-
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clear spins (which serve as the bath) [6–9]. In a moder-
ate (& 0.1 Tesla in GaAs quantum dots) external mag-
netic field, the electron spin relaxation is strongly sup-
pressed [10–12], and the coherence decay is dominated by
pure dephasing. Recently, a variety of quantum many-
body theories have been developed to evaluate the bath
state evolution LJ(τ) or its ensemble average, including
the density matrix cluster expansion [13, 14], the pair-
correlation approximation [5], the linked-cluster expan-
sion [15], and the cluster correlation expansion [16, 17].
In the pair-correlation approximation [5], each pair-wise
flip-flop of the nuclear spins is identified as an elemen-
tary excitation mode and is taken as independent of each
other. To study the higher order correlations, the Feyn-
man diagram linked-cluster expansion is developed [15].
The evaluation of higher order linked-cluster expansion,
however, is tedious due to the increasing number and
complexity of diagrams with increasing the interaction
order. The density matrix cluster expansion [13, 14] pro-
vides a simple solution to include the higher order spin
interaction effects beyond the pair-correlation approx-
imation (without the need to count or evaluate Feyn-
man diagrams). However, the accuracy problem (even
when the expansion converges) limits the cluster expan-
sion to applications in large spin baths. The cluster-
correlation expansion [16, 17] bears the accuracy of the
linked-cluster expansion (the results are accurate when-
ever converge) and the simplicity of the cluster expan-
sion (without the need to count or evaluate Feynman
diagrams), while free from the large-bath restriction of
the cluster expansion.

2 Suppressing decoherence by dynamical

decoupling

Since qubit decoherence results from uncontrolled evo-
lution due to the coupling between the qubit and the
bath, a natural idea to combat decoherence is to encode
the qubit in a subspace immune to noises from the en-
vironment (decoherence-free subspace [18, 19]), which is
made possible by symmetries of the interactions in cer-
tain physical systems. Alternatively, the coherence can
be protected by dynamically eliminating the qubit-bath
coupling during the evolution (dynamical decoupling, re-
ferred to as DD for short). The DD schemes were orig-
inated from the Hahn echo [20] and were developed for
high-precision magnetic resonance spectroscopy [21–23].
When the field of quantum computing was opened up,
the idea of DD was introduced to protect qubit coherence
[24–27], which stimulated numerous theoretical studies
on extension and applications of the DD approach to
quantum computing [28–38]. The recent experimental
advances are also remarkable [39–41].

In the DD scheme, a sequence of pulses is applied to

flip the qubit and average the qubit–bath coupling to
zero during the evolution. It is a promising strategy
due to its compatibility with other desired functionali-
ties, such as quantum gates [42–44]. The most general
Hamiltonian describing the coupling between a qubit and
a bath reads

Ĥ = Ĉ + σ̂x ⊗ X̂ + σ̂y ⊗ Ŷ + σ̂z ⊗ Ẑ (11)

where σ̂x/y/z are the Pauli matrices for the qubit, and
Ĉ, X̂, Ŷ , and Ẑ are bath operators. The off-diagonal cou-
pling

(
σ̂x ⊗ X̂ + σ̂y ⊗ Ŷ

)
induces population relaxation.

The diagonal coupling σ̂z ⊗ Ẑ induces pure dephasing.

2.1 Carr–Purcell–Meiboom–Gill DD

For the sake of simplicity, we first consider the pure de-
phasing case (X̂ = Ŷ = 0). In the absence of control-
ling pulses, the evolution of the quantum state |Ψ(τ)〉 =
Û0 |Ψ(0)〉 of the coupled qubit-bath system is driven by
the free propagator Û0 ≡ e−iĤτ = e−i(Ĉ+σ̂z⊗Ẑ)τ .

The Hahn echo [20] is realized by a single instanta-
neous π pulse applied at the middle of the evolution to
switch the qubit states between |↑〉 and |↓〉,
|Ψ(2τ)〉 = Û0σ̂xÛ0 |Ψ(0)〉 (12)

so that the propagator for the whole evolution from 0 to
2τ is Û0σ̂xÛ0 = σ̂xÛ1 with

Û1 ≡ σ̂xÛ0σ̂xÛ0 = e−i(Ĉ−σ̂z⊗Ẑ)τe−i(Ĉ+σ̂z⊗Ẑ)τ

= e−i2τ [Ĉ+σ̂z⊗Ẑ·O(Ĉτ)] (13)

In the propagator, the qubit–bath coupling is eliminated
in the first order of the pulse interval τ . By repeating the
Hahn echo propagator Û1, the Carr–Purcell–Meiboom–
Gill DD (CPMG) [45, 46] can be constructed so as to
preserve the coherence of the qubit for a long time.

The building block of CPMG consists of two instanta-
neous π pulses applied at τ and 3τ , respectively. At the
end of the evolution t = 4τ , the state of the qubit-bath
system is |Ψ(4τ)〉 = Û2 |Ψ(0)〉, where the propagator

Û2 = Û0σ̂xÛ0Û0σ̂xÛ0 = σ̂xÛ1σ̂xÛ1

= e−i4τ [Ĉ+σ̂z⊗Ẑ·O(Ĉ2τ2)] (14)

is obtained by embedding Û1 into the basic structure
σ̂x (· · ·) σ̂x (· · ·). The CPMG sequence of 2N pulses
is obtained by repeating the building block Û2 for N

times. The propagator for the whole evolution from 0 to
T = 4Nτ is

ÛCPMG = ÛN
2 = e−iT [Ĉ+σ̂z⊗Ẑ·O(Ĉ2τ2)] (15)

The qubit–bath coupling is eliminated up to the second
order of the minimum pulse interval τ .

2.2 Concatenated DD

Note that in Eq. (14), the building unit of CPMG can
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be viewed as a nested application of the Hahn echo,
which eliminates the qubit–bath coupling to one order
higher than the simple Hahn echo does. It was noticed
in Refs. [26, 27] that a mirror-symmetric arrangement
of two DD sequences can decouple a quantum object to
a higher order. Furthermore, Ref. [27] mentioned the
possibility of realizing DD to an arbitrary order by iter-
ative construction. Khodjasteh and Lidar proposed the
first explicit concatenated DD (CDD) scheme [30, 31] to
eliminate arbitrary qubit–bath coupling (including both
diagonal and off-diagonal couplings) with an intuitive ge-
ometrical understanding [47]. The idea of CDD was fur-
ther developed by the incorporation of randomness into
the sequence for improvement of performance [32, 36].
CDD schemes against pure dephasing were investigated
for electron spin qubits in realistic solid-state systems
with nuclear spins as baths [33, 35]. The advantage of
CDD over the periodic DD sequences has been observed
in experiments for nuclear spin qubits in solid-state en-
vironments [43].

The propagator for CDD is obtained by recursion

Ûn = σ̂xÛn−1σ̂xÛn−1 = e−i2nτ [Ĉ+σ̂z⊗Ẑ·O(Ĉnτn)] (16)

in which the qubit–bath coupling has been eliminated
up to the nth order of the minimum pulse interval τ .
By increasing the concatenation level n, the qubit–bath
coupling can be eliminated up to an arbitrary order of τ .

For the most general qubit-bath Hamiltonian in
Eq. (11), the idea of concatenation can still be applied to
eliminate both the pure dephasing term σ̂z ⊗ Ẑ and the
relaxation term σ̂x⊗ X̂ + σ̂y ⊗ Ŷ . In the absence of con-
trolling pulses, the evolution of the qubit-bath system is
driven by the free propagator Û0 ≡ e−iĤτ . The qubit-
bath coupling can be eliminated up to the first order of
τ by the controlled evolution [30]:

Û1 ≡ Û0

(
σ̂xÛ0σ̂x

)(
σ̂yÛ0σ̂y

)(
σ̂zÛ0σ̂z

)

= e−iτ(Ĉ+σ̂x⊗X̂+σ̂y⊗Ŷ +σ̂z⊗Ẑ)

· e−iτ(Ĉ+σ̂x⊗X̂−σ̂y⊗Ŷ−σ̂z⊗Ẑ)

· e−iτ(Ĉ−σ̂x⊗X̂+σ̂y⊗Ŷ−σ̂z⊗Ẑ)

· e−iτ(Ĉ−σ̂x⊗X̂−σ̂y⊗Ŷ +σ̂z⊗Ẑ)

= e−i4τ [Ĉ+O(αβτ)] (17)

where α denotes the norm of Ĉ, and β denotes the norm
of X̂, Ŷ , Ẑ. Thus, all the qubit–bath coupling terms are
eliminated in the first order of the minimum pulse in-
terval τ . By concatenation, the propagator for the nth-
order CDD is

Ûn ≡ Ûn−1

(
σ̂xÛn−1σ̂x

)(
σ̂yÛn−1σ̂y

)(
σ̂zÛn−1σ̂z

)

= e−i4nτ [Ĉ+O(αβnτn)+O(α2βn−1τn)+···+O(αnβτn)](18)

in which the qubit-bath coupling has been eliminated up
to the nth order of τ . By increasing the concatenation

level n, the qubit–bath coupling can be eliminated up to
an arbitrary order.

To eliminate the qubit-bath coupling to a given order
N of the evolution time, the number of instantaneous
π pulses scales exponentially with the order of CDD,
namely, Npulse = O(2N ) for eliminating the pure dephas-
ing term and Npulse = O(4N ) for eliminating all qubit-
bath couplings. Since errors are inevitably introduced in
each π pulse, it is desirable to minimize the number of
controlling pulses used to achieve a given order of decou-
pling.

2.3 Uhrig DD

Uhrig DD (UDD) [37, 48–50] is a remarkable advance in
the DD theory. UDD can eliminate the qubit-bath pure
dephasing up to the Nth order of the evolution time us-
ing N instantaneous π pulses applied at

Tj = T sin2 jπ

2(N + 1)
, j = 1, 2, . . . , N (19)

during the evolution of the qubit-bath system from 0 to
T . UDD is optimal in the sense that it uses the minimum
number of control pulses for a given order of decoupling.
Such pulse sequences for N 6 5 were first noticed by
Dhar et al. in designing control of the quantum Zeno
effect [51]. The application of such sequences to DD was
first proposed by Uhrig for a pure dephasing spin-boson
model [37]. Then, Lee, Witzel and Das Sarma conjec-
tured that UDD may work for a general pure dephasing
model with an analytical verification up to N = 9 [48].
Later, computer-assisted algebra was used to verify the
conjecture up to N = 14 [49]. Finally, UDD was rigor-
ously proved to be universal for any order N and was
also extended to the case of population relaxation [50].
The performance bounds for UDD against pure dephas-
ing were also established [52].

By construction, UDD is optimal for a finite system
(or a system with a hard cut-off in the spectrum) in the
“high fidelity” regime where a short-time expansion of
the qubit–bath propagator converges. For the “low fi-
delity” regime, further theoretical work [38, 53] shows
that UDD is optimal when the noise spectrum has a
hard cutoff, while CPMG performs better than CDD and
UDD when the noise has a soft cutoff or when the hard
cutoff is not reached by the spectrum filtering functions
corresponding to the DD sequences. The experimental
investigations of UDD were carried out in an array of
∼ 1000 Be+ ions [40] and in irradiated malonic acid crys-
tals [41].

2.3.1 Spin-boson model: Discovery of UDD

The qubit–bath Hamiltonian Ĥsb of the spin-boson pure
dephasing model [37] corresponds to Ĉ =

∑
i ωib̂

†
i b̂i and
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Ẑ =
∑

i(κi/2)(b̂†i + b̂i) in Eq. (7), where b̂i is the bosonic
annihilation operator. For N instantaneous π pulses ap-
plied at T1, T2, · · · , TN ∈ [0, T ], the propagator for the
evolution from 0 to T is

Û(T, 0) = Û0(T − TN )σ̂xÛ0(TN − TN−1) · · ·
· σ̂xÛ0(T2 − T1)σ̂xÛ0(T1) (20)

where Û0(t) = e−iĤsbt is the free propagator. Û(T, 0)
can be written as ÛN (for N being even) or σ̂xÛN (for
N being odd) with

ÛN = e−i(Ĉ+(−1)N σ̂z⊗Ẑ)(T−TN )

· e−i(Ĉ+(−1)N−1σ̂z⊗Ẑ)(TN−TN−1) · · ·
· e−i(Ĉ−σ̂z⊗Ẑ)(T2−T1)e−i(Ĉ+σ̂z⊗Ẑ)T1

=
Û

(+)
N + Û

(−)
N

2
+ σ̂z ⊗ Û

(+)
N − Û

(−)
N

2
(21)

where Û
(±)
N is obtained from ÛN by replacing σ̂z by ±1.

In the Nth-order UDD, the positions T1, T2, · · · , TN of
the N pulses are fixed by requiring that in the propaga-
tor ÛN , the qubit-bath coupling should be eliminated up
to the Nth order, i.e.,

δÛ(T ) ≡ Û
(+)
N − Û

(−)
N = Û

(−)
N [(Û (−)

N )†Û (+) − 1]

∼ O
(
TN+1

)
(22)

or equivalently,

δ̃Û(T ) ≡ (Û (−)
N )†Û (+) − 1 ∼ O

(
TN+1

)
(23)

By exact diagonalization of the spin-boson Hamiltonian,
δ̃Û(T ) has been evaluated as δ̃Û(T ) = e2∆̂(T ) with

∆̂(T ) =
N∑

j=0

(−1)j
[
K̂I(Tj)− K̂I(Tj+1)

]
(24)

where we have defined T0 ≡ 0, TN+1 ≡ T , and

K̂I(t) ≡ eiĈtK̂e−iĈt (25a)

K̂ ≡
∑

i

κi

2ωi
(b̂†i − b̂i) (25b)

The Taylor expansion

K̂I(t) = K̂ +
∞∑

p=1

(it)p

p!

p-fold commutator︷ ︸︸ ︷[
Ĉ, · · ·

[
Ĉ,

[
Ĉ, K̂

]]]

≡ K̂ +
∞∑

p=1

K̂pt
p (26)

yields ∆̂(T ) = −
∞∑

p=1
K̂pT

pΛp, where

Λp ≡
N∑

j=0

(−1)j

[(
Tj+1

T

)p

−
(

Tj

T

)p]
(27)

Thus, the condition δ̃Û(T ) = O(TN+1) is equivalent to

N coupled algebra equations

Λp = 0, p = 1, 2, · · · , N (28)

whose unique physical solution is the UDD sequence in
Eq. (19). The UDD sequence is optimal in that it uses
the minimum number of pulses to make the first N terms
of Λp’s vanish and eliminate the qubit-bath coupling up
to the Nth order.

2.3.2 Geometrical interpretation of decoherence and
DD

Here, we give a geometrical interpretation of decoherence
and DD by considering the spin-boson pure dephasing
model, based on trajectories of bath quantum states in
the Hilbert space conditioned on the qubit states and DD
control. The pure dephasing qubit-bath Hamiltonian can
be reformulated as:

Ĥ ≡
∑
±
|±〉〈±| ⊗ Ĥ± (29)

where {|±〉} denote the two eigenstates of the qubit,
and the bath operators Ĥ± = Ĉ ± Ẑ. The qubit coher-
ence is given by the overlap of bath states, as shown in
Eq. (10).

The state of the bosonic bath can be described in
the basis of coherent states [54]. The coherent state
of the lth boson mode is |Pl〉 ≡ ePlb̂

†
l−P∗l b̂l |0〉 with Pl

being a complex number. A coherent state |Pl(t0)〉 af-
ter a time of evolution under the Hamiltonians Hl,± =
ωlb̂

†
l b̂l ± 1

2κl(b̂
†
l + b̂l) is still a coherent state:

e−iĤl,±(t−T0)|Pl(T0)〉 = |Pl,±(t)〉e−iθ± (30)

where

Pl,±(t) =
[
Pl(T0)− (∓ κl

2ωl
)
]
e−iωl(t−T0) ∓ κl

2ωl
(31)

and the phase factor θ±(t) = ± ∫ t

t0
<[ 12κlP

∗
l (t)]dt.

As illustrated in Fig. 1, the complex numbers Pl,±(t),
which represent the coherent states, are rotating clock-
wise about the points ∓ κl

2ωl
in the complex plane with an

amplitude of |Pl(T0)| and an angular frequency ωl. The
overlap of the bifurcated states

|〈Pl,+(t)|Pl,−(t)〉| = exp(−|Pl,+(t)− Pl,−(t)|2) (32)

is determined by their distance in the complex plane. We
consider the case that the initial bath state is a coher-
ent state |J〉 =

⊗
l |Pl(T0)〉. Thus, at time t, the qubit

coherence is

LJ(t) =
⊗

l

|〈Pl,+(t)|Pl,−(t)〉| (33)

which decreases when the distance between Pl,+(t) and
Pl,−(t) in the complex plane is increased. Since the
bifurcated evolution of the bath is determined by the
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qubit states |±〉, during the qubit-bath evolution, in-
stantaneous flips of the qubit states will cause the bath
evolution pathways to exchange their rotation centers.
At some later time, the two bifurcated pathways could
cross into each other, upon which the qubit and the bo-
son mode become disentangled. At this disentanglement
point, the which-way information is erased, and there-
fore, the qubit coherence is recovered.

Fig. 1 The bifurcated trajectories (solid curves) of Pj,±(t) in the
complex plane under qubit flip control applied at T1 = T/4 and
T2 = 3T/4, with the initial time T0 = 0 and final time T3 = T .
The arrows on the solid curves indicate the evolution directions.

Let the bifurcated bath states at time Tm−1 be denoted
by the complex numbers {Pl,∓(Tm−1)}. Suppose there
is a qubit flip applied at t = Tm−1. After an interval of
evolution, the bath states will become

Pl,±(Tm) = [Pl,∓(Tm−1)± κl

2ωl
]e−iωl(Tm−Tm−1)

∓ κl

2ωl
(34)

We define the difference ∆l
m ≡ Pl,+(Tm)−Pl,−(Tm). By

recursively using the initial condition

Pl,+(T0) = Pl,−(T0) = Pl(T0) (35)

and Eq. (34), we have that after N flips at times T1, T2,
· · ·, TN , the difference

∆l
N+1 = i(−1)N+1e−iωlTN+1κlf(ωl) (36)

with

f(ωl) ≡ 1
iωl

N∑

j=0

(−1)j(eiωlTj+1 − eiωlTj ) (37)

Eqs. (34) and (36) give us a geometrical interpretation
of control of decoherence by qubit flips. In Fig. 1, we
show the evolution of Pj,±(Tm) for qubit flips occurring
at T1 = T/4 and T2 = 3T/4, with the total evolution
time T3 = T .

Note that the initial Pl(T0) is canceled in the expres-
sion of ∆l

N+1 in Eq. (36). Thus, from Eqs. (32) and (33),
the coherence LJ is independent of the initial bath state

|J〉 =
⊗

l |Pl(T0)〉. By the expansion of f(ωl), we obtain

∆l
N+1 = (−1)N+1e−iωlT

κl

ωl

∞∑
n=1

(iωlT )n

n!
Λn (38)

where Λn is given by Eq. (27). The distance ∆l
N+1 be-

tween Pl,±(TN+1) is a small quantity ∼ O
(
TN+1

)
if

{Λn = 0} for n 6 N . Thus, the conditions for UDD
are reproduced.

2.3.3 Proof of universality of UDD against pure dephas-
ing

The proof of the universality (i.e., model independence)
[50] of UDD is facilitated by the observation that to elim-
inate the qubit-bath coupling to a given order, one needs
only to eliminate the odd-power terms of the coupling
σ̂z ⊗ Ẑ in the perturbative expansion of the propagator,
since the even-power terms of σ̂z ⊗ Ẑ is a pure bath op-
erator, (σ̂z ⊗ Ẑ)2m = Ẑ2m, which does not cause qubit
decoherence. We will present the proof in the interaction
picture following Ref. [50], which can be easily reformu-
lated in other pictures [52].

As discussed in the previous section, for the pure de-
phasing Hamiltonian in Eq. (7) under the control of the
Nth-order UDD sequence, the propagator from 0 to T is
given by

ÛN = e−i(Ĉ+(−1)N σ̂z⊗Ẑ)(T−TN )

· e−i(Ĉ+(−1)N−1σ̂z⊗Ẑ)(TN−TN−1) · · ·
· e−i(Ĉ−σ̂z⊗Ẑ)(T2−T1)e−i(Ĉ+σ̂z⊗Ẑ)T1 (39)

the proof of the universality of UDD is equivalent to
proving

ÛN = Û
(bath)
N + O(TN+1) (40)

where Û
(bath)
N is a bath operator containing no qubit op-

erators. With the standard perturbation theory in the in-
teraction picture, Eq. (39) can be put in the time-ordered
formal expression:

ÛN = e−iĈT T̂ e−i
R T
0 FN (t)σ̂z⊗ẐI(t)dt (41)

where T̂ is the time-ordering operator, the modulation
function FN (t) ≡ (−1)j for t ∈ [

Tj , Tj+1

]
with T0 ≡ 0

and TN+1 ≡ T , and

ẐI(t) ≡ eiĈtẐe−iĈt =
∞∑

p=0

(it)p

p!

p-folds commutator︷ ︸︸ ︷[
Ĉ,

[
Ĉ, · · ·

[
Ĉ, Ẑ

]
· · ·

]]

≡
∞∑

p=0

Ẑpt
p (42)

The propagator can be expanded into Taylor series:

ÛN = e−iĈT
∞∑

n=0

(−iσ̂z)n ⊗ ∆̂n ≡ Û
(even)
N + Û

(odd)
N (43)
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where

∆̂n ≡
∫ T

0

FN (tn) dtn

∫ tn

0

FN (tn−1)dtn−1 · · ·

·
∫ t2

0

FN (t1)dt1 ẐI (tn) ẐI (tn−1) · · · ẐI (t1) (44)

is a pure bath operator. Here,

Û
(even)
N = e−iĈT

∞∑

k=0

(−i)2k∆̂2k (45)

consists of even powers of the qubit-bath coupling σ̂z⊗Ẑ

and therefore is a pure bath operator, which does not in-
duce qubit dephasing. The term consisting of the odd
powers of the qubit bath coupling

Û
(odd)
N = σ̂z ⊗ e−iĈT

∞∑

k=0

(−i)2k+1∆̂2k+1 (46)

induces the qubit dephasing. We just need to show that
∆̂2k+1 = O

(
TN+1

)
.

Using the expansion in Eq. (42), we have

∆̂n =
∑

{pj}

(
Ẑpn

· · · Ẑp2Ẑp1Fp1,p2,···,pn
Tn+p1+p2+···+pn

)

(47)

where

Fp1,···,pn ≡
∫ T

0

dtn
T
· · ·

∫ t3

0

dt2
T

∫ t2

0

dt1
T

·
n∏

j=1

FN (tj)
(

tj
T

)pj

(48)

is a dimensionless constant independent of T . Now, the
problem is reduced to proving

Fp1,p2,···,pn = 0 (49)

for n being odd and n+
∑n

j=1 pj 6 N . For this purpose,
we make the variable substitution tj = T sin2(θj/2) and
define the scaled modulation function:

fN (θ) ≡ FN

(
T sin2 θ

2

)
= (−1)j (50)

for θ ∈ [jπ/(N + 1), (j + 1) π/(N + 1)]. With

sin2p θ

2
sin θ = (2i)−2p

2p∑
r=0

Cr
2p sin [(p− r + 1) θ] (51)

we can write Fp1,p2,···,pn
as a linear combination of terms

in the form

fq1,···,qn ≡
∫ π

0

dθn · · ·
∫ θ3

0

dθ2

∫ θ2

0

dθ1

·
n∏

j=1

fN (θj) sin (qjθj) (52)

with |qj | 6 pj +1. It suffices to show that fq1,q2,···,qn = 0
for odd n and

∑n
j=1 |qj | 6 N . We notice that fN (θ)

is a periodic function with a period of 2π/(N + 1), and

therefore, can be expanded into Fourier series:

fN (θ) =
∑

k=1,3,5,···

4
kπ

sin [k (N + 1) θ] (53)

The key feature of the Fourier expansion to be exploited
is that it contains only odd harmonics of sin[(N + 1)θ].
With the Fourier expansion, we just need to show that

∫ π

0

dθn · · ·
∫ θ3

0

dθ2

∫ θ2

0

dθ1

n∏

j=1

cos (rjθj + qjθj) = 0

(54)

for n being odd, rj being an odd multiple of (N +1), and∑n
j=1 |qj | 6 N . With the product-to-sum trigonometric

formula repeatedly used, it can be shown by induction
that after an even number of variables θ1, θ2, . . . , θ2k have
been integrated over, the resultant integrand as a func-
tion of θ2k+1 is the sum of cosine functions of the form

cos (R2k+1θ2k+1 + Q2k+1θ2k+1) (55)

with R2k+1 being an odd multiple of (N + 1) and
|Q2k+1| 6

∑2k+1
j=1 |qj |. In particular, the last step is

∫ π

0

cos (Rnθn + Qnθn) dθn (56)

Since Rn is an odd (non-zero, of course) multiple of
(N +1), and |Qn| 6

∑n
j=1 |qj | 6 N , we have Rn +Qn 6=

0, and the integral above must be zero. Thus, Eq. (49)
holds. The proof is done.

It should be noted that in the proof above, the
perturbation-theoretical expansion requires that the
Hamiltonian of the bath has a finite norm, which means
that the noise spectrum felt by the qubit has a hard cut-
off.

2.3.4 Universality of UDD against population relax-
ation

A straightforward corollary of Eq. (49) is that UDD can
also be used to suppress population relaxation of the
qubit. Considering the most general qubit–bath Hamil-
tonian in Eq. (11) and assuming that the UDD sequence
consists of N instantaneous π pulses to rotate the qubit
around the z-axis, we aim to show that the relaxation
of the qubit population in |↑〉 and |↓〉 is eliminated up
to O(TN ). The propagator of the qubit-bath evolution
from 0 to T is

Û(T, 0) = Û0(T − TN )σ̂zÛ0(TN − TN−1) · · ·
·σ̂zÛ0(T2 − T1)σ̂zÛ0(T1) (57)

where Û0(t) = e−iĤt is the free propagator. Û(T, 0) can
be written as ÛN (for N being odd) or σ̂zÛN (for N

being even) with

ÛN = e−i[Ĉ′+(−1)N D̂](T−TN ) · · ·
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· e−i(Ĉ′−D̂)(T2−T1)e−i(Ĉ′+D̂)T1 (58)

in which the Hamiltonian has been separated into Ĉ ′ ≡
Ĉ+ σ̂z⊗Ẑ and D̂ ≡ σ̂x⊗X̂+ σ̂y⊗Ŷ . With the definition
D̂I (t) ≡ eiĈ′tD̂e−iĈ′t, the propagator can be formally
expressed as:

ÛN = e−iĈ′T T̂ e−i
R T
0 FN (t)D̂I(t)dt = Û

(even)
N + Û

(odd)
N

(59)

where

Û
(even)
N = e−iĈ′T

∞∑

k=0

(−i)2k∆̂′
2k (60)

consists of even powers of D̂, and

Û
(odd)
N = e−iĈ′T

∞∑

k=0

(−i)2k+1∆̂′
2k+1 (61)

consists of odd powers of D̂, with ∆̂′
n obtained from ∆̂n

in Eq. (44) by replacing ẐI(t) by D̂I(t). By expanding
D̂I(t) into Taylor series [similar to Eq. (42)]

D̂I(t) =
∞∑

p=0

D̂pt
p (62)

the identity Eq. (49) immediately gives ∆̂′
2k+1 =

O(TN+1). As a result, Û
(odd)
N = O(TN+1) and the prop-

agator

ÛN = Û
(even)
N + O(TN+1) (63)

contains only even powers of D̂ up to O(TN ). Since D̂

contains only the Pauli matrices σ̂x and σ̂y and an even
power of the two Pauli matrices σ̂nx

x σ̂
ny
y (with nx + ny

being even) is either unity or iσ̂z, the propagator

ÛN = e−iĤeff (T )T+O(T N+1) (64)

where the effective Hamiltonian Ĥeff(T ) = Ĉeff(T )+σ̂z⊗
Ẑeff(T ) contains only pure dephasing term σ̂z ⊗ Ẑeff(T )
and commutes with σ̂z. Thus, the N -pulse UDD elimi-
nates the population relaxation up to O(TN ).

2.3.5 Time-dependent Hamiltonians

From the procedures following Eqs. (42) and (62), it is
immediately observed that the proof above applies to
time-dependent Hamiltonian as long as a Taylor expan-
sion of the Hamiltonian similar to those in Eqs. (42) and
(62) exists (such as a Hamiltonian having analytical time
dependence). Such a generalization was presented by
Pasini and Uhrig [55].

2.3.6 UDD with non-instantaneous pulses

With the help of Eq. (54), we realize that Eq.
(49) holds for more general modulation functions
FN (t) as long as the scaled modulation function

fN (θ) ≡ FN

(
T sin2(θ/2)

)
contains only odd harmonics

of sin[(N + 1)θ] as in Eq. (53), i.e.,

fN (θ) =
∞∑

k=0

Ak sin [(2k + 1)(N + 1)θ] (65)

with arbitrary coefficients Ak. Motivated by this obser-
vation, we try to generalize UDD to the case of π pulses
with a finite duration.

For the case of UDD against general decoherence, we
consider the control of the qubit by an arbitrary time-
dependent magnetic field B(t) applied along a certain
direction to protect the qubit coherence along this axis.
Without loss of generality, we take this direction as the
z-axis. The general qubit–bath Hamiltonian under DD
control is

Ĥ(t) = Ĉ+σ̂x ⊗ X̂+σ̂y ⊗ Ŷ +σ̂z ⊗ Ẑ+
1
2
σ̂zB(t) (66)

In the rotating reference frame following the qubit pre-
cession under the magnetic field, the Hamiltonian be-
comes

ĤR(t) = Ĉ ′ + cos[φ(t)]D̂+ + sin[φ(t)]D̂− (67)

where the precession angle φ(t) =
∫ t

0
B (t′) dt′, Ĉ ′ ≡ Ĉ +

σ̂z⊗Ẑ, D̂+ ≡ σ̂x⊗X̂+σ̂y⊗Ŷ , and D̂− ≡ σ̂x⊗Ŷ −σ̂y⊗X̂.
The propagator in the rotating reference frame is

ÛN = e−iĈ′T T̂ exp
(
− i

∫ T

0

∑

λ=±
Fλ

N (t)Dλ
I (t)dt

)
(68)

with F+
N (t) = cos[φ(t)], F−N (t) = sin[φ(t)], and D̂λ

I (t) =
eiĈ′tD̂λe−iĈ′t. Again, we decompose ÛN as the sum of
Û

(even)
N (which consists of even powers of D̂±) and Û

(odd)
N

(which consists of odd powers of D̂±),

Û
(even)
N = e−iĈ′T

∞∑

k=0

∑

λ1,···,λ2k

(−i)2k∆̂(λ1,···,λ2k)
2k (69a)

Û
(odd)
N = e−iĈ′T

∞∑

k=0

∑

λ1,···,λ2k+1

(−i)2k+1∆̂(λ1,···,λ2k+1)
2k+1

(69b)

where

∆̂(λ1,···,λn)
n ≡

∫ T

0

Fλn

N (tn) dtn

∫ tn

0

F
λn−1
N (tn−1)dtn−1

· · · ·
∫ t2

0

Fλ1
N (t1)dt1 D̂λn

I (tn) D̂
λn−1
I (tn−1)

· · · · D̂λ1
I (t1) (70)

has a structure similar to ∆̂n in Eq. (44). After ex-
panding {D̂λk

I (tk)} into Taylor series, the identity Eq.
(49) immediately gives ∆̂(λ1···λ2k+1)

2k+1 = O(TN+1). Thus,
the qubit decoherence along the z-axis is suppressed to
O

(
TN+1

)
] as long as the scaled modulation function

f±N (θ) ≡ F±N
(
T sin2(θ/2)

)
contains only odd harmonics

of sin[(N + 1)θ] as depicted in Eq. (65). This condition
is satisfied if and only if the scaled modulation functions
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f±N (θ) have the following symmetries:
1) periodic with period of 2π/(N + 1);
2) anti-symmetric with respect to θ = jπ/(N + 1);
3) symmetric with respect to θ = (j + 1/2)π/(N + 1).
The anti-symmetry condition requires f±N (θ) be either

zero or discontinuous at θ = jπ/(N +1). However, f+
N (θ)

and f−N (θ) cannot be simultaneously zero since they have
to satisfy the normalization condition

[
f+

N (θ)
]2

+
[
f−N (θ)

]2
= 1 (71)

according to the definition of F±N (t). So there must be
sudden jumps at least in one of two modulation functions
at θ = jπ/(N+1), which means that the controlling mag-
netic field B(t) has to contain a δ -pulse for π-rotation
at t = Tj . With the initial conditions f+

N (0) = 1 and
f−N (0) = 0, one can choose the field such that f−N (θ)
is continuous, while f+

N (0) has sudden jumps between
+1 and −1 at θ = jπ/(N + 1). Thus, a generalized
UDD sequence can be chosen the following way: For
θ ∈ [0,π/(2N + 2)], f+

N (θ) can be arbitrary but sudden
jumps from −1 to +1 at θ = 0 and from +1 to −1 at
π/(2N + 2), and f−N (θ) is determined from the normal-

ization condition as f−N (θ) = ±
√

1− [
f+

N (θ)
]2

. At other
regions, f±N (θ) are determined by the symmetry require-
ments. The pulse amplitude B(t) for the generalized
UDD is

B(t) =
1

F+
N (t)

d
dt

F−N (t) =
N∑

j=1

πδ (t− Tj) + Bextra(t)

(72)

which is a superposition of the instantaneous UDD pulses
and an extra component Bextra(t) being arbitrary but
subject to the symmetry requirements. The demand of
δ-pulses in the generalized UDD is consistent with the
previous finding in Ref. [56] that the effect of an instan-
taneous π-pulse on the evolution of a qubit coupled to
a bath cannot be exactly reproduced by a pulse with a
finite magnitude. An example of the scaled modulation
functions and the corresponding magnetic field for the
generalized third-order UDD control are shown in Fig. 2.
Notice that due to the variable transformation from θ to
t, the magnetic field B(t) does not have the symmetries
as the scaled modulation functions f±N (θ). For example,
B(t) is not periodic and the pulse at different time has
different width.

Obviously, the same argument holds for DD against
pure dephasing just by changing the rotation axis.

2.3.7 UDD with pulses of finite amplitude

In realistic experiments, the pulses have finite dura-
tions and amplitudes, which introduces additional errors.
There is a no-go theorem that states that instantaneous
π-pulses cannot be approximated by pulses of finite

Fig. 2 An example of (a) the scaled modulation functions f±N (θ)
for the generalized third-order UDD control and (b) the corre-
sponding magnetic field B(t). The dashed lines indicate the corre-
spondence between the sudden jumps of the modulation function
f+

N (θ) in (a) and the sharp spikes as instantaneous π-pulses in (b).
Reproduced from Ref. [50], Copyright c© 2008 the American Phys-
ical Society.

amplitude and of short duration τp with accuracy higher
than the order O(τp) without perturbing the bath evolu-
tion [56, 57]. However, as we have discussed above, the
symmetric requirements of fN (θ) automatically guaran-
tee the performance of UDD. Uhrig and Pasini showed
that by appropriately designing the pulses, the qubit-
bath Hamiltonian describing pure dephasing can be
transformed into the form [58]

Ĥ = Ĉ + F̃N (t)σ̂z ⊗ Ẑ + O(τM
p ) (73)

with the modulation function taking values from
{−1, 0, 1}. The scaled modulation function f̃N (θ) ≡
F̃N

(
T sin2(θ/2)

)
is designed to have the symmetries re-

quired in the previous proof and therefore can be ex-
panded by odd harmonics of sin[(N + 1)θ]. Thus, the
decoherence is suppressed up to the order O(TN+1) +
O(τM

p ). This sequence can also suppress longituddinal
relaxation [50, 58]. An arbitrary order M of pulse shap-
ing can be achieved by a recursive scheme based on con-
catenation [59].

2.4 Comparison of decoupling efficiencies of UDD and
CDD

We consider a DD sequence of N pulses, with a total
evolution time T and a minimum pulse interval τ . In
CDD, the decoupling order is n ∼ log2 N and τ = T/2n.
In UDD, the decoupling order is N and τ ∼ T/N2. To
be specific, our discussion is based on the pure dephasing
model. The situation for the general decoherence model
is similar. We compare the efficiencies of UDD and CDD
in the following scenarios:

Case I. The total evolution time T is fixed. The decou-
pling precision (defined as the effective coupling under
the DD control relative to the original one) in UDD was
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derived as [52]:

εUDD ∼ ||H||NTN/N ! (74)

In CDD, it scales with the time and the decoupling order
as [31, 34, 44]:

εCDD ∼
(
||H||T/

√
N

)n

= (||H||T )n
/2n2/2 (75)

Note that here we have not considered the subtleties
in distinguishing the norms of the bath Hamilton and
the qubit–bath interaction [31, 34, 44, 52]. Thus, with
T fixed, it increases the decoupling order, and hence
the number of pulses always increases the decoupling
precision. An arbitrarily high decoupling precision can
be achieved simply by choosing a sufficiently high order
of DD (and correspondingly, a sufficiently small pulse
interval τ). In the high-fidelity regime (T is small), the
decoupling precision of UDD scales with the number of
pulses is much faster than that of CDD. However, if we
compare the efficiency of UDD and CDD of the same
decoupling order n, i.e., the nth-order UDD (contain-
ing n pulses) and the nth-order CDD (containing 2n

pulses), CDD has a much higher decoupling precision
than UDD does (Tn/2n2/2 ¿ Tn/n! for large n), since
the minimum pulse interval τ = T/2n in CDD is much
smaller than that in UDD (τ ∼ T/n2). For the same
reason (namely, reduction of τ), to achieve a given order
of precision, CDD indeed requires by far less than the
seemingly exponential cost.

Case II. The minimum pulse interval τ is fixed, which
is a frequently encountered restriction in realistic exper-
iments. In this situation, increasing the order of DD
leads to two competing effects [52, 60]. First, the qubit-
bath coupling is eliminated to a higher order, which
tends to increase the decoupling precision. Second, the
total evolution time T increases, and the bath has more
time to inflict qubit decoherence. Competition between
these two effects leads to the existence of an optimal
decoupling order, beyond which further increasing the
order of DD does not improve the decoupling precision
any longer. For a given minimum pulse interval τ , the
optimal order of UDD is [52]

nopt,UDD ∼ 1/ (||H||τ) (76)

and that of CDD is [34, 43, 44]

nopt,CDD ∼ − log2 (||H||τ) (77)

Note that the total number of pulses is of the same or-
der in the optimal order UDD and CDD. UDD has a
much higher optimal level than CDD for a small mini-
mum pulse interval, and therefore the highest decoupling
precision that can be achieved by UDD is much higher
than that by CDD.

2.5 Experimental progresses

UDD was first realized in experiments by Biercuk et al.
in an array of ∼1000 Be+ ions in a Penning ion trap [40,
61, 62] with noises mimicked by artificially introduced
random modulation of the control fields. The qubit
states were realized using a ground-state electron-spin-
flip transition. Coherent qubit operations were achieved
through a quasi-optical microwave system. UDD was
compared with CPMG in the “low fidelity” regime for
various classical noise spectra. The data show that UDD
dramatically outperforms CPMG for Ohmic noise [power
spectrum S(ω) ∝ ω] with a sharp cutoff, while for the
ambient magnetic field fluctuations whose power spec-
trum S(ω) ∝ 1/ω4 has a soft cutoff, UDD performs
similarly to CPMG over the entire range of accessible
noise intensities, consistent with the theoretical predic-
tions [38, 53].

The first experimental realization of UDD against re-
alistic noises was achieved by Du et al. in a solid-state
system, namely, irradiated malonic acid single crystals.
The spins of the radicals in the crystals created by irra-
diation form an ensemble of qubits. The nuclear spins,
in samples with relatively low concentrations of radicals,
constitute the quantum bath, which can be considered as
finite for the time-scales involved in the experiment and
therefore has a finite noise spectrum. The pulsed elec-
tron paramagnetic resonance was used to demonstrate
the performance of UDD for preserving electron spin co-
herence at temperatures from 50 K to room temperature
[41]. Using a seven-pulse UDD sequence, the electron
spin coherence time was prolonged from 0.04 µs to about
30 µs. The experimental data from different samples un-
der various conditions demonstrate that UDD performs
better than CPMG in fighting against noises from nu-
clear spins. The good agreement between the experiment
and calculations based on microscopic theories [16, 17]
enables the authors to identify the relevant electron spin
decoherence mechanisms as the electron-nuclear contact
hyperfine interaction and the electron-electron dipolar
interaction.

3 New developments

3.1 CUDD: Concatenation of UDD

CDD can eliminate all the qubit-bath couplings (includ-
ing pure dephasing and population relaxation) up to an
arbitrary order N at the cost of exponentially increasing
number (of the order 4N ) of controlling pulses. In con-
trast, UDD sequence uses the least number (i.e., N) of
controlling pulses to eliminate either pure dephasing or
population relaxation (but not both) to the desired order
N . Based on a combination of CDD and UDD, a new DD
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sequence (named CUDD) was proposed [63] to suppress
both the pure dephasing and the population relaxation
to order N with a much less (of the order N2N ) num-
ber of pulses. The essential idea of CUDD is to use the
Nth-order UDD sequence (instead of the free evolution)
as the building block of CDD sequence.

The propagator ÛN–UDD(T ) for the qubit–bath evolu-
tion driven by the general Hamiltonian Eq. (11) under
Nth-order UDD sequence of π rotation around the z axis
is

ÛN–UDD = e−i[Ĉ′+(−1)N D̂](T−TN ) · · ·
· e−i(Ĉ′−D̂)(T2−T1)e−i(Ĉ′+D̂)T1

= e−iĤeff (T )T+O(T N+1) (78)

[see Eq. (58)], where {Tj} are given by Eq. (19), and
Ĥeff(T ) = Ĉeff(T ) + σ̂z ⊗ Ẑeff(T ) is a pure dephasing
Hamiltonian. The pure dephasing can be eliminated by
embedding ÛN–UDD into the structure [σ̂x(· · ·)σ̂x] (· · ·).
The propagator for the mth-order concatenation of
ÛN–UDD is

Û
(m)
N–UDD = σ̂xÛ

(m−1)
N–UDDσ̂xÛ

(m−1)
N–UDD (79)

with Û
(0)
N–UDD = ÛN–UDD. In the CUDD scheme,

Û
(N)
N–UDD eliminates both the pure dephasing and pop-

ulation relaxation up to the Nth order with O(N2N )
pulses.

3.2 Near optimal DD by nesting UDD

Recently, West et al. proposed a near optimal DD [64]
obtained by nesting UDD sequences, dubbed quadratic
DD (QDD), to protect qubits against general noises. The
inner Nth-order UDD eliminates population relaxation,
and the outer Nth-order UDD eliminates the pure de-
phasing, so that both pure dephasing and population
relaxation are eliminated up to the Nth order of the
evolution time. Using Û

(Z)
N–UDD(τ) to denote the qubit-

bath propagator driven by the general Hamiltonian Eq.
(11) under the Nth-order UDD sequence of π rotation
around the z axis, the propagator of the (N, M)th-order
near optimal DD,

Û
(M)
N = Û

(Z)
N–UDD(T −TM )σ̂xÛ

(Z)
N–UDD(TM −TM−1) · · ·

· σ̂xÛ
(Z)
N–UDD(T2 − T1)σ̂xÛ

(Z)
N–UDD(T1) (80)

is obtained from Eq. (57) by replacing the free propa-
gator Û0(t) by Û

(Z)
N–UDD(t), where {Tj} are given by Eq.

(19) with N replaced with M . Thus, Û
(N)
N eliminates

both the pure dephasing and the population relaxation
up to the Nth order using O(N2) pulses. Numerical sim-
ulation shows that for a fixed number of pulses, this DD
sequence outperforms CDD and CUDD by exponential
saving of the number of the pulses and it is nearly opti-
mal for small N , differing from the optimal solutions by

no more than two pulses.
A proof of the QDD was attempted in Ref. [55] with

the argument that after the inner level of UDD control,
the resulting effective Hamiltonian is time-dependent,
and the outer level of UDD control applies to time-
dependent Hamiltonians. The effective Hamiltonian un-
der the inner level of UDD control, as defined in Ref. [55],
however, is only piecewise analytical. It can be shown by
some counter examples [65] that for a general piecewise
analytical Hamiltonian taken as resulting from certain
inner level of control, it is not guaranteed that the outer
level of decoupling can be realized to the desired order.
Thus, it remains an open question to us why the nested
UDD control works.

3.3 Protecting multi-qubit states by UDD

Mukhtar et al. recently showed [66] that by applying a
sequence of unitary operations

P̂ψ = 2|ψ〉〈ψ| − I (81)

on the multilevel quantum system according to the tim-
ing of UDD, the initial quantum state |ψ〉 is protected
to the order of O

(
TN+1

)
. This operation was also given

in Ref. [51].
Obviously, we have P̂ †ψ = P̂ψ. We define the operators

Ĉ = (Ĥ + P̂ψĤP̂ψ)/2 (82a)

Ẑ = (Ĥ − P̂ψĤP̂ψ)/2 (82b)

Then, the system-bath Hamiltonian is separated into two
parts

Ĥ = Ĉ + Ẑ (83)

where Ĉ commutes with the operator P̂ψ, while Ẑ anti-
commutes with P̂ψ, i.e.,

P̂ψĈP̂ψ = Ĉ (84a)

P̂ψẐP̂ψ = −Ẑ (84b)

By applying a sequence of N operations P̂ψ according to
the timing of UDD, the system-bath propagator reads

ÛN = P̂N
ψ e−i(Ĉ+Ẑ)(T−TN )P̂ψe−i(Ĉ+Ẑ)(TN−TN−1) · · ·

· P̂ψe−i(Ĉ+Ẑ)(T2−T1)P̂ψe−i(Ĉ+Ẑ)T1 (85)

Note that a final P̂ψ pulse is required for odd N . Similar
to the procedure in the proof of the universality of UDD,
we rewrite the propagator as

ÛN = e−iĈT T̂ e−i
R T
0 FN (t)ẐI(t)dt (86)

where ẐI(t) ≡ eiĈtẐe−iĈt anticommutes with P̂ψ. We
separate ÛN into two parts

ÛN ≡ Û
(even)
N + Û

(odd)
N (87)

where
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Û
(even)
N = e−iĈT

∞∑

k=0

(−i)2k∆̂2k (88a)

Û
(odd)
N = e−iĈT

∞∑

k=0

(−i)2k∆̂2k+1 (88b)

with

∆̂n ≡
∫ T

0

FN (tn) dtn

∫ tn

0

FN (tn−1)dtn−1 · · ·

·
∫ t2

0

FN (t1)dt1 ẐI (tn) ẐI (tn−1) · · · ẐI (t1) (89)

Obviously, Û
(even)
N commutes with P̂ψ, since it contains

even powers of Ẑ. Following the same arguments in
the proof of UDD for qubit dephasing, we conclude that
Û

(odd)
N = O(TN+1). Thus, P̂ψÛN = ÛN P̂ψ + O(TN+1),

which immediately indicate that the expectation value
of P̂ψ, and hence, the quantum state |ψ〉 are preserved
up to O(TN+1).

4 Conclusions and perspectives

In summary, we have given a review of recent progresses
in protecting qubit coherence by the dynamical decou-
pling schemes. The DD techniques originate from the
magnetic resonance spectroscopy. The developments for
quantum information technologies can in turn advance
the high-precision magnetic resonance spectroscopy. For
example, UDD has recently been applied in magnetic res-
onance imaging of tumors in animals [67]. The extension
of the spin coherence by DD may have important appli-
cations in nano scale or even atomic scale magnetometry
[68].

Remarkably, experiments have demonstrated the DD
method as a particularly promising scheme for protect-
ing quantum coherence in quantum computing. As com-
pared to the quantum error correction schemes, the DD
requires no auxiliary qubits and can be integrated nat-
urally with the quantum gates without extra hardware
overhead. However, the DD approach has a shortcoming
in that it works only for slow baths or for non-Markovian
noises, in the sense that the characteristic separation
time of the DD sequence is required to be shorter than
or at least comparable to the inverse of the character-
istic width of the noise spectrum. The quantum error
correction scheme has no such requirements. In dealing
with errors in quantum computing due to spontaneous
emission, combination of DD and quantum error correc-
tion was proposed [69]. It is conceivable that in future
quantum computing, the non-Markovian noises can be
decoupled by DD and the remaining Markovian noises
can be coped with by quantum error correction. In gen-
eral, for a multi-qubit system coupled to both Marko-
vian and non-Markovian noises, a combination of the

two paradigmatic error-countering methods provides a
complete picture for scalable quantum computing [44].

In the present research of DD, mostly, the pulses are
assumed instantaneous with only a few exceptions. Two
important issues are under intensive research, and some
remarkable results have emerged recently [31, 42, 44,
52, 59]. One is how to extend the DD to implement
high-fidelity quantum gates or hybrid DD with quan-
tum gates. Can some ideas be borrowed from DD for
realizing dynamical control resilient to noises? Such an
issue was previously addressed in simulation of quantum
processors with DD approaches [70]. Recently, encour-
aging progresses have been made toward hybridization
of quantum gates and DD [42–44]. Another issue is how
to design a quantum gate (such as a qubit flip, which
is required in DD) optimally in the presence of envi-
ronmental noises. Various optimization schemes have
been invented for suppressing/minimizing the noise ef-
fect to a certain order [71–74]. Ref. [59] has established a
systematic method to achieve an arbitrary order of pre-
cision based on iterative construction of finite-amplitude
pulses. It is of interest to ask whether and how the pulse
shaping for quantum gates with an arbitrary order of
precision can be systematically constructed without it-
eration, with the development from CDD to UDD being
an inspiring example.
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70. P. Wocjan, M. Rötteler, D. Janzing, and T. Beth, Phys.

Rev. A, 2002, 65: 042309

71. G. Gordon, G. Kurizki, and D. A. Lidar, Phys. Rev. Lett.,

2008, 101: 010403

72. P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, and F. K.
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