
PHYS 5130 Problem Set 7 Solution

1.

Solution: In the lectures, the following results have been derived for 3D Fermi gas.

EF =
~2

2m

(
3π2n

) 2
3 . (1)

Moreover, one could define the following quantities in terms of Fermi energy

TF =
EF
k

(2)

=
~2

2mk

(
3π2n

) 2
3 . (3)

KF =

√
2mEF
~

(4)

= (3π2n)
1
3 (5)

(a) Given n = 2.65× 1022 cm−3 = 2.65× 1028 m−3, and me = 9.109 383 701 5× 10−31 kg. One could obtain
Fermi energy EF and Fermi temperature TF by direct substitution into the formulae.

One could then obtain

EF = 5.1929× 10−19 J = 3.24 eV, (6)

and

TF = 3.76× 104 K. (7)

(b) Average separation is given by
(
V
N

) 1
3 = 3.354 �A.

T0 =
h2

2πmk

(
N

V

) 2
3

(8)

= 4.9384× 104 K (9)

TF and T0 are of the same order.

(c) Using n = 1× 1044 m−3, one obtains

EF = 6.8455× 10−12 J = 4.2726× 107 eV, (10)

TF = 4.958× 1011 K (11)

and

KF = 1.4359× 1015 m−1 = 1.4359× 105 �A
−1
. (12)

(d) Here, n = 1× 1016 cm−3 = 1× 1022 m−3. So one obtains

EF = 2.718× 10−23 J = 1.69× 10−4 eV (13)

and

TF = 1.96 K. (14)

2.

Solution:

(a) As starting point, one could make use of the density of state g(k) for particle in a box. Then, one could
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compute g<(k).

g<(k) =

∫ k

0

g(k)dk (15)

=
4π

8

(
L

π

)3 ∫ k

0

k2dk (16)

=
L3

6π2
k3. (17)

Making use of ε = c~k, one could then obtain g<(ε)

g<(ε) =
L3

6π2

( ε
c~

)3
. (18)

Therefore,

g(ε) =
dg<(ε)

dε
(19)

=
L3

2π2c3~3
ε2 (20)

=
V

2π2c3~3
ε2. (21)

Taking into consideration the spin degeneracy factor gs = 2, one obtains

g(ε) =
V

π2c3~3

∫ ∞
0

ε2 (22)

(b) The equation for total number of particles is given by

N =

∫ ∞
0

g(ε)fFD(ε)dε. (23)

At T = 0, the integral can be written as

N =

∫ EF

0

g(ε)dε (24)

=
V

π2c3~3

∫ EF

0

ε2dε (25)

=
V E3

F

3π2c3~3
. (26)

One then obtains EF = c~
(
3π2n

) 1
3 .

Total energy of the system is given by

E =

∫ ∞
0

g(ε)fFD(ε)εdε. (27)

At T = 0,

E =

∫ ∞
0

g(ε)fFD(ε)εdε. (28)

=
V

π2c3~3

∫ EF

0

ε3dε (29)

=
V E4

F

4π2c3~3
(30)

=
3

4
NEF (31)

So, energy per particle is given by

E

N
=

3

4
EF . (32)

2



(c) In the lectures, the following result has been derived for 3D ideal Fermi gas,

pV = kT
∑
i

gi ln
(

1 + e−β(εi−µ)
)
. (33)

In this continuum case,

pV = kT

∫ ∞
0

g(ε) ln
(

1 + e−β(ε−µ)
)
dε (34)

=
kTV

π2c3~3

∫ ∞
0

ε2 ln
(

1 + e−β(ε−µ)
)
dε (35)

=
kTV

3π2c3~3

∫ ∞
0

ln
(

1 + e−β(ε−µ)
)
dε3 (36)

=
kTV

3π2c3~3

(
ε3 ln

(
1 + e−β(ε−µ)

)∣∣∣∞
0

+ β

∫ ∞
0

ε3e−β(ε−µ)

1 + e−β(ε−µ)
dε

)
(37)

=
V

3π2c3~3

∫ ∞
0

ε3e−β(ε−µ)

1 + e−β(ε−µ)
dε (38)

=
1

3

∫ ∞
0

g(ε)ε

eβ(ε−µ) + 1
dε (39)

=
1

3

∫ ∞
0

g(ε)εfFD(ε)dε (40)

=
1

3
E (41)

(d) Using results from part (b), (c), one obtains

pV =
1

4
NEF (42)

p =
1

4
nEF (43)

=

(
3

1
3π

2
3

4

)
c~n

4
3 (44)

3.

Solution:

(a) Rather than considering the density of state g(ε) directly, one could first consider the number of states
with energy less than or equal ε, denoted by g<(ε).

After some consideration, one could see that g<(ε) corresponds to a right angled pyramid in the n space,

with height ε
~ω , base area 1

2

(
ε
~ω
)2

. So g<(ε) = ε3

6(~ω)3 . (Ignoring any possible spin degeneracy factor.)

Therefore,

g(ε) =
dg<(ε)

dε
(45)

=
ε2

2(~ω)3
. (46)

For illustration, one could consider the 2D case, the figure below shows the 2D n space, with each
point indicating one state, which occupies an area of unit 1. The shaded regions indicates right an-
gled (isosceles) triangles of different lengths for the sides, as area increases, the relative contribution
of states on the border decreases, and the number of states within the triangle can be approximated

by its area, which can be identified with g<2D(ε). Therefore, in 2D case, g<2D(ε) = 1
2

(
ε
~ω
)2

. The situ-
ation is similar in 3D case, except one has to consider the volume of a right angled pyramid instead.
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(b) At Tc, µ = 0. Therefore, one obtains

N =

∫ ∞
0

g(ε)fBE(ε)dε (47)

=
1

2 (~ω)
3

∫ ∞
0

ε2

e
ε
kTc − 1

dε. (48)

Letting x = ε
~ω , the above expression could be rewritten as

N =
(kTC)3

2(~ω)3

∫ ∞
0

x2

ex − 1
dx (49)

=
(kTC)3

2(~ω)3
Γ(3)ζ(3) (50)

=
(kTC)3

2(~ω)3
Γ(3)ζ(3) (51)

=

(
kTC
~ω

)3

ζ(3) (52)

Then, one obtains

TC =
~ω
k

(
N

ζ(3)

) 1
3

(53)

(c)

N0 = N −Nexcited (54)

= N − 1

2 (~ω)
3

∫ ∞
0

ε2

e
ε
kT − 1

dε (55)

= N −
(
kT

~ω

)3

ζ(3) (56)

= N −
(
T

TC

)3(
kTC
~ω

)3

ζ(3) (57)

= N −N
(
T

TC

)3

(58)

= N

(
1−

(
T

TC

)3
)

(59)

4.
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Solution: The potential function is given by

U =

{
∞ r < rc

−c6r−6 r > rc
. (60)

For the given potential, one could compute B2,

B2 = −2π

∫ ∞
0

(
e−

U
kT − 1

)
r2dr (61)

= −2π

∫ rc

0

(
e−

U
kT − 1

)
r2dr − 2π

∫ ∞
rc

(
e−

U
kT − 1

)
r2dr (62)

= 2π

∫ rc

0

r2dr − 2π

∫ ∞
rc

(
e

c6
r6kT − 1

)
r2dr (63)

=
2π

3
r3c − 2π

∫ ∞
rc

(
e

c6
r6kT − 1

)
r2dr (64)

≈ 2π

3
r3c − 2π

∫ ∞
rc

c6
r4kT

dr (65)

=
2π

3
r3c −

2πc6
3r3c

1

kT
. (66)

Comparison with the form of B2 obtained from van der Waals equation leads to the identification of b
NA

with
2π
3 r

3
c and a

N2
A

with 2πc6
3r3c

.

5.

Solution:

(a) At the coexistence line, the two phases share the same temperature and pressure, so one can write

8TR

3
(
vg − 1

3

) − 3

v2g
=

8TR

3
(
vg − 1

3

) − 3

v2g
. (67)

Therefore, one could write the expression in terms of TR, given by

TR =
1

8

(
vl + vg
v2gv

2
l

)
(3vg − 1)(3vl − 1). (68)

Introducing the following two variables, s = vg + vl, ∆v = vg − vl, the expression could be rewritten as

TR = 2s

((
3

2
s− 1

)2

− 9

4
∆v2

)
(s2 −∆v2)−2 (69)

To explore the behavior around critical point, one could perform Taylor expansion around vl = 1, vg = 1,
so s = 2,∆v = 0. After some calculation, to the lowest nonvanishing order, one obtains

TR(2 + δs, δv) = TR(2, 0)− 3

16
δs2 − 1

16
δv2 (70)

δTR = − 3

16
δs2 − 1

16
δv2 (71)

As δvg > 0, δvl < 0, so δs2 term can be neglected. One then obtains β = 1
2 .

(b) Fixing TR = 1, one obtains

pR =
8

3
(
vR − 1

3

) − 3

v2R
(72)

To extract the behavior of p near the critical point, with TR = 1, one could consider the taylor expansion
of pR(vR) at vR = 1, one then obtains

pR(1 + δvR) = pR(1) +
dpR
dvR

∣∣∣
1
δvR +

1

2

d2pR
dv2R

∣∣∣
1
δv2R + . . . (73)

δpR =
dpR
dvR

∣∣∣
1
δvR +

1

2

d2pR
dv2R

∣∣∣
1
δv2R + . . . (74)
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Then, to extract the critical exponent, one has to evaluate the different order of derivatives of pR.

dpR
dvR

= − 8

3
(
vR − 1

3

)2 +
6

v3R
. (75)

As dpR
dvR

∣∣
1

= 0, one has to go to higher order.

d2pR
dv2R

=
16

3
(
vR − 1

3

)3 − 18

v4R
. (76)

Similarly, d2pR
dv2R

∣∣
1

= 0.

d3pR
dv3R

= − 48

3
(
vR − 1

3

)4 +
72

v5R
. (77)

As d3pR
dv3R

∣∣
1

= −9, to the lowest order, one gets

δpR = −3

2
δv3R. (78)

So δ = 3.
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