
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 9 EXERCISE CLASSES (15
- 19 March 2021)
The Sample Questions are designed to serve several purposes. They either review what you have
learnt in previous courses, supplement our discussions in lectures, or closed related to the questions
in an upcoming Problem Set. You should attend one exercise class session per week. You
are encouraged to think about (or work out) the sample questions before attending exercise class
and ask the TA questions.

Reminder – Please be reminded that the Mid-term Examination will be held on 20
March 2021 (Saturday) morning at 10am - 12noon in SC L1 and SC L2. Those who
cannot possibly come to campus physically will do an online invigilated exam at around
the same time.

Progress: In Week 8, we started to discuss atomic transitions, which is an initial value problem
in the presence of a time-dependent Hamiltonian. The form of Ĥ ′(r, t) in the electric dipole
mechanism was introduced. Time-dependent perturbation theory was discussed and we ar-
rived at a formula for a2(t), which is the probability amplitude of finding the system (the atom)
to be in an energy eigenstate “2” given that the system was in an energy eigenstate “1” before
Ĥ ′(r, t) started to affect the system. We will see the big consequences of this single formula. It gives
the selection rules, energy criteria for transitions to occur, stimulated absorption and stimulated
emission rates. Spontaneous emission is harder to understand within Schrödinger QM, but we will
see how Einstein’s A and B coefficients (related to spontaneous emission and stimulated processes)
are related and hence the spontaneous emission rate can also be obtained.

SQ18 - First-order perturbation theory - a slow motion analysis [Optional for Exam Purposes]
SQ19 - Electric dipole matrix elements, forbidden and allowed transitions in hydrogen atom between
n = 1 and n = 2 states

SQ18 First-order perturbation theory - a slow motion analysis [Optional for Exam Purposes]

In the classnotes (an Appendix in the Light-Matter Interaction Module), time-dependent
perturbation theory was discussed. Using a general equation for da2(t)/dt, etc., we claimed
that plugging the zeroth-order solutions on the RHS of the equation will give the first-order
perturbation theory for da2(t)/dt and that the zeroth-order solutions are the given initial
conditions. The goal of the Appendix is to arrive at Eq. (13) in the class notes from which
stimulated emission and absorption follow. Here, TA will fill in the argument of tracking the
order of the theory.

The starting point is Eq. (A8) in the Appendix. To set up the counting of the order, we write
the problem in hand Ĥ = Ĥ0 + Ĥ ′(r, t) as Ĥ = Ĥ0 + λĤ ′(r, t), with λ being a parameter
tracing the order of the theory. The λ = 1 case is our problem. Plugging the exact expression

Ψ(r, t) =
∑
n

an(t)e−iEnt/h̄ψn(r) , (1)

where the time-dependent coefficients an(t) carry all the effects of Ĥ ′(r, t), into the time-
dependent Schrödinger equation (TDSE), we arrive at

ih̄
da2(t)

dt
= a1(t) ei(E2−E1)t/h̄

∫
ψ∗2[λĤ ′]ψ1d

3r + a2(t)

∫
ψ∗2[λĤ ′]ψ2d

3r (2)

and

ih̄
da1(t)

dt
= a1(t)

∫
ψ∗1[λĤ ′]ψ1d

3r + a2(t) ei(E1−E2)t/h̄
∫
ψ∗1[λĤ ′]ψ2d

3r (3)
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where λ is explicitly included to count the order. Here, we simplified the problem to consider
only two states. Eq. (2) and Eq. (3) are exact and they are equivalent to TDSE.

TAs: Express the unknown coefficients order-by-order as:

a1(t) = a
(0)
1 (t) + λa

(1)
1 (t) + λ2a

(2)
1 (t) + · · · (4)

a2(t) = a
(0)
2 (t) + λa

(1)
2 (t) + λ2a

(2)
2 (t) + · · · (5)

where the superscripts “(0)”, “(1)” track the order in Ĥ ′. For our purpose, we only need to

retain up to a
(1)
1 (t) and a

(1)
2 (t). Substitute Eq. (4) and Eq. (5) into Eq. (2) and Eq. (3)

to obtain the equations for da
(0)
1 /dt, da

(0)
2 /dt, da

(1)
1 /dt, and da

(1)
2 /dt. Show that the

zeroth-order solutions are given by the initial conditions, and the zeroth-order solutions go

into the RHS of the equations for da
(1)
1 /dt and da

(1)
2 /dt.

Finally, for the special initial conditions of a1(0) = 1 and a2(0) = 0, write down the equation

for da
(1)
2 (t)/dt and solve for a2(t) formally up to first-order. The result is Eq. (13) in the class

notes.

SQ19 The integral that determines selection rules and Hydrogen atom’s “Matrix element” for tran-
sitions between n = 1 and n = 2 states

From the key result of first-order time-dependent perturbation theory, there is an integral that
involves the perturbation Ĥ ′(r, t) = er · Ecos(ωt) = er · êE cos(ωt), where r is the position
of the electron in the atom and ê is the unit vector representing the polarization of the EM
waves. When a system is initially in an eigenstate ψinitial, only Ĥ ′ can take the system away
from ψinitial, and the governing equation of a2(t) has a spatial integral (see SQ18)

a2(t) ∝
∫
ψ∗final(r) Ĥ ′ ψinitial(r) d3r (6)

With the form of Ĥ ′, we have

a2(t) ∝ rfinal,initial =

∫
ψ∗final(r) r ψinitial(r) d3r . (7)

The integral on the RHS is a vector (to be dotted into ê of the electric field). There is a
function of time not shown here and it gives the energy criterion, i.e., h̄ω must be right for
the transition. In general, the integral in Eq. (7) is usually handled numerically for atoms
and molecules. This is the “position matrix element” that determines a2(t). The probability
of a transition from state 1 to state 2 after Ĥ ′ is applied for a time t is |a2(t)|2.

For the hydrogen atom, the integral can be evaluated analytically. The integral plays an
important role for stimulated processes AND spontaneous emission, as well as setting selection
rules.

(a) Let’s consider transitions in a hydrogen atom. By inspecting the integral

a2(t) ∝ r2s,1s ≡
∫
ψ∗2s(r) ~r ψ1s(r) d3r =

∫
ψ∗200(r) r ψ100(r) d3r (8)

that would determine a transition between 1s and 2s states, show that the integral
vanishes and thus the transition is not allowed (forbidden) by the electric dipole mecha-
nism. In the process, point out that it is the angular (θ and φ) integrals that determine
whether the integral vanishes or not, and the integral over r is usually not a problem.
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(b) For the hydrogen atom, the transition between 1s and 2p is allowed. In this case, the
integral that matters is

a2(t) ∝ r2p,1s ≡
∫
ψ∗2p(r) r ψ1s(r) d3r (9)

Recall that there are several 2p states. So let’s be concrete. Consider the transition
between the 1s ground state and 2p state of m` = +1 for which the angular part is
Y11(θ, φ). Thus, ψ2,1,+1(r) is the final state and ψ1,0,0(r) is the initial state.

(i) The integral in Eq. (9) is a vector because r is a vector. Explicitly, writing

r = xx̂+ yŷ + zẑ = r sin θ cosφ x̂+ r sin θ sinφ ŷ + r cos θ ẑ , (10)

evaluate the integral in Eq. (9). It is important to note that the answer is a
vector and in general complex. [TA: Give the answer in Bohr radius.]

(ii) For (stimulated) absorption, consider an external field ~E = E ẑ, i.e., the incident light
is linearly polarized in z-direction (so the propagating direction is not z). Point out
that it is the ẑ-component of r2p,1s that matters. Hence, discuss the condition for
the component z2p,1s to be non-zero. Hence, argue that such a linearly polarized
light cannot stimulate an absorption from ψ1,0,0(r) to ψ2,1,+1(r). Further discuss
that such a linearly polarized light cannot stimulate an emission from (2, 1,+1) to
the ground state (1, 0, 0).

(iii) Now consider circularly polarized light. Let the propagation direction be the z-
direction. From EM theory, its electric field is on the x-y plane. In particular, a
circularly polarized light with its polarization specified by e+ ∝ (x̂ + iŷ) has its
electric field rotating with time at a fixed point in space (note that there is an time
factor e−iωt in the field that gives the rotating behavior). Now let’s do QM. Show
that such a circularly polarized light can indeed stimulate a transition between
ψ1,0,0(r) and ψ2,1,+1(r).

[Implication: Skillfully using circularly polarized light can selectively induce transitions
and thus put atoms into a particular excited state. In recent years, techniques in cold
atom physics (cooling atoms down to nano-Kelvin) also use circularly polarized light to
induce selected transitions.]
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