
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 7 EXERCISE CLASSES (1
March - 5 March 2021)
The Sample Questions are designed to serve several purposes. They either review what you have
learnt in previous courses, supplement our discussions in lectures, or closed related to the questions
in an upcoming Problem Set. Students should be able to do the homework problems independently
after attending the exercise class. You should attend one exercise class session. You are
encouraged to think about (or work out) the sample questions before attending exercise class and
ask the TA questions.
Progress in our course: We started to discuss the quantum mechanics of multi-electron atoms.
For the many-electron Schrödinger Equation, the strategy is to reduce it to solving one-electron
problems for the atomic orbitals. We used the helium atom ground state problem to illustrate
the possibility of handling the effects of the other electron (electrons in bigger atoms) on one
electron in an averaged way. It leads to an effective one-electron Schrödinger Equation problem,
although solving the equation often requires self-consistent calculations. We also illustrated that
a variational calculation using a product of one-electron (atomic) states gives reasonable result, thus
further supporting the idea of approximating many-electron wavefunctions by a product of single-
electron atomic states. These ideas eventually led to the Independent Particle Approximation
(IPA). After solving for the single-electron states, the next step is to fill the electrons into
the atomic orbitals. We know there is the Pauli Exclusion Principle. The more general
principle is that the many-electron wavefunctions must be anti-symmetric with respect to
interchanging any two electrons. It is due to the indistinguishability of electrons. Combining
this requirement with IPA, the Pauli Exclusion Principle comes out. Filling the atomic orbitals
with the Pauli Exclusion Principle explains the periodic table. These are the key points of Atomic
Physics.

In discussing the helium atom ground state, we introduced the Hartree method of handling
the electron-electron interaction. We claimed the result of the Direct Coulomb Integral
without prove. A similar integral is also needed in the variational method. The TAs will fill in
the mathematical details in evaluating the Direct Coulomb Integral here.

SQ14 Helium atom ground state energy - First order perturbation theory
SQ15 Helium atom ground state energy - Variational method

The Helium Atom
The helium atom is the simplest many-electron system and it is the playground to learn the

physics of multi-electron atoms. The helium atom Hamiltonian in SI units is

Ĥhelium =

ĥ1︷ ︸︸ ︷
− h̄2

2m
∇2

1 −
2e2

4πε0r1
−

ĥ2︷ ︸︸ ︷
h̄2

2m
∇2

2 −
2e2

4πε0r2︸ ︷︷ ︸
Ĥ0

+
e2

4πε0r12
, (1)

where r12 = |r1 − r2|. Given Ĥhelium, we tried every tool we have in our box. We tried the first
order perturbation theory and the variational method. More importantly, the results illustrate the
way to move on to approximate a two-electron QM problem by one-electron problems by treating
the effect of one electron on the other approximately.

When we invoke such approximation we will obtain single-electron states (atomic orbitals). It
is the spirit of the Independent Particle Approximation (IPA). IPA is useful in atomic physics
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and nuclear physics. Let’s consider the ground state of a helium atom. We know that the
ground state has two electrons in the helium 1s atomic orbitals, with one electron being “spin-
up” and another “spin-down”. With two spin-1/2 particles, the total spin ~S has its quantum
number being S = 1 (triplet spin states) or S = 0 (singlet spin state). In Week 7, we will
discuss that quantum mechanical many-electron wavefunctions must be antisymmetric with
respect to interchanging the coordinates of the two electrons. The proper helium atom ground state
wavefunction is

ψ(1, 2) = φ1s(r1)φ1s(r2)︸ ︷︷ ︸
symmetric spatial part

1√
2

(α(1)β(2)− α(2)β(1))︸ ︷︷ ︸
anti−symmetric spin part

. (2)

The spin part is the S = 0 singlet state. Here, “1” (and “2”) represents the coordinates (x,y,z, and
spin) of electron #1 (and electron #2). We used α to represent the spin-up (ms = +1/2) state
and β the spin-down (ms = −1/2) state. The spin part in Eq. (2) makes sure that the helium
atom ground state wavefunction ψ(1, 2) is anti-symmetric with respect to interchanging the two
electron’s coordinates. What it means is that if we interchange r1 ↔ r2 and 1 ↔ 2 in ψ(1, 2), we
have ψ(2, 1) = −ψ(1, 2). We will discuss more about Eq. (2) and the spin part later. Here, it is the
spatial part that goes into the calculations.

We used ψ(1, 2) several times in our discussions.

• Perturbation Theory - The first 4 terms in Eq. (1) form the unperturbed problem Ĥ0 and
the electron-electron interaction term (last term) is the perturbation Ĥ ′. In this case,
φ1s(r1)φ1s(r2) is the solution to Ĥ0 and thus each φ1s is a hydrogen-like wavefunction, which
is known. SQ14 takes on this viewpoint.

• Variational Method - The form of Eq. (2) and the hydrogen-like form of Ĥ0 = ĥ1 + ĥ2
motivate a trial wavefunction that can be used in a variational calculation. SQ15 takes on
this viewpoint.

• In Hartree type approximation, φ1s(r) is an unknown and yet-to-be-determined wavefunc-
tion. By including an averaged effect of one electron in φ1s on the other electron also in φ1s,
an equation (Hartree equation) can be set up to solve for φ1s(r) self-consistently.

SQ14 Helium Ground State energy using first-order perturbation theory. (Educational, but the
techniques in evaluating the integrals are Optional for Exam Purposes)

In class notes, we claimed the result of the first-order perturbation approach, which needed the
expectation value of e2/4πε0r12 for φ1s(r1)φ1s(r2). Here, the TA will show the calculations.

The first four terms forming Ĥ0 = ĥ1 + ĥ2 gives an exactly solvable problem. The problem
defined by

ĥ = − h̄2

2m
∇2 − 2e2

4πε0r
(3)

is a hydrogen-like problem and thus its solutions are known. In this case, φ1s(r) is a
hydrogen-like 1s state of the form

φ1s(r) = φ100(r) =
1√
π

(
Z

a0

)3/2

e
− Z
a0
r

(4)

where Z = 2 for ĥ in Eq. (3). [Remark: Z = 1 gives the hydrogen atom 1s state].
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(a) For φ1s(r1)φ1s(r2) with φ1s(r) given by Eq. (4), what is the zeroth-order energy of
the helium atom problem in units of eV and in Hartree (atomic units).

(b) Using Eq. (2) (with φ1s(r) in Eq. (4)) as the unperturbed wavefunction for the ground
state, the first-order perturbation theory (in Hartree Eh and in eV ) gives an integral
over r1 and r2, i.e., integrating over 6 variables. Evaluate the integral explicitly,
with clear explanations.

[Remark: The answer is 5
8Z = 5×2

8 Eh = 5
4 Eh, as given in class notes. Here the TA will

work out the not-too-easy integrals.]

(c) Hence, obtain the helium atom ground state energy in first order perturbation theory
and compare it with the known value of −2.9033 Eh.

SQ15 Helium ground state energy using variational method. (Techniques of evaluating the integrals
are Optional for Exam Purposes)

Here is a twist on the problem and another way of using Eq. (2). Instead of using Z = 2 in
the wavefunction φ1s(r) in Eq. (4), let’s turn Z into a variational parameter and call it ζ.
So the variational problem is defined by

Ĥhelium = − h̄2
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4πε0r2
+

e2
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, (5)

with the trial wavefunction

ψtrial(r1, r2) =

(
1√
π

(
ζ

a0

)3/2

e
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a0
r1

)
·
(

1√
π
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ζ
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e
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)
(6)

(a) Evaluate 〈Ĥhelium〉 with respect to the trial wavefunction to obtain

〈Ĥhelium〉 = E(ζ) = −ζ2 + 2 ζ(ζ − 2︸︷︷︸
nuclear charge

) +
5

8
ζ = ζ2 − 27

8
ζ (7)

when the result is expressed in atomic units (in Hartree).

[Hints: The term − 2e2

4πε0r1
in Ĥhelium can be written as − ζe2

4πε0r1
− (2−ζ)e2

4πε0r1
. The same goes

for the term involving r2. The integral in SQ14 will also be useful.]

(b) Apply the variational method, i.e., varying the value of ζ to search for the best value,
to obtain the best estimate to the helium atom ground state energy.

[Remarks: Comparing the variational calculation result to the known value of helium ground
state energy is −2.9033 Eh, the approximation works quite well. Note that we only included
one variational parameter ζ in the trial wavefunction in Eq. (6). This idea opens up wilder
ideas. How about inserting more parameters? (Ans: Yes, it should work better.) How about
varying the whole function φ1s(r)? (Ans: Yes! This can also be done!) And this is the
formal mathematical approach to obtain the Hartree approximation with the self-consistent
equation for φ1s(r) as discussed in class. More formally, the mathematics invoked is functional
derivatives, quite like what you did in varying the trajectory x(t) (which is a function) of a
particle from (x1, t1) to (x2, t2) in classical mechanics in discussing the less action principle.]
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