
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 4 EXERCISE CLASSES (1-5
February 2021)
You are encouraged to think about (or work out) the sample questions before attending exercise
class and ask the TA questions. Your should attend one exercise class session per week.

SQ6: Relativistic correction to the kinetic energy term - First order perturbation theory for the
H-atom energies
SQ7: Matrix elements of xα between harmonic oscillator states

SQ6 Relativistic correction to the kinetic energy term - First order perturbation theory for H-atom
energies (Following up SQ2)

Background – In SQ2, we showed that starting from

T =
√
p2c2 +m2c4 −mc2 (1)

for the kinetic energy and expanding the expression in powers of the small parameter (p/mc),
the leading correction term to the kinetic energy T is

T ≈ p2

2m
− p4

8m3c2
. (2)

Within the context of the hydrogen atom problem, we have a modified Hamiltonian

Ĥ =
p2

2m
+ V (r)− p4

8m3c2
=

(
p2

2m
− e2

4πε0r

)
− p4

8m3c2
= Ĥ0 + Ĥ ′. (3)

Without the relativistic term, the Schrödinger Equation gives solutions of the form ψn`m`

with eigenvalues (allowed energies) given by E
(0)
n ∼ −13.6/n2 in eV. This is, therefore, a

perfect situation to study the effect of the relativistic correction term Ĥ ′ using the first-order
perturbation theory. The calculation is interesting for the following reasons: (a) We will
investigate the spin-orbit interaction in atoms. It is another relativistic effect. Therefore,
it will be fair to also see how this relativistic correction term alters the known zeroth order
H-atom energies. (b) It is easy to write down what to evaluate as E

(1)
rel . (c) It is, however,

NOT easy to evaluate E
(1)
rel . Nonetheless, E

(1)
rel can be evaluated analytically for all H-atom

states. (d) It is a result students need to know. (e) But students are not expected
to be able to do the integrals involved in this SQ for exam purposes.

TAs: Apply the first order perturbation theory and show that the first order correction
in energy due to the relativistic term is

E
(1)
rel = −E(0)

n

(
E

(0)
n

2mc2

){
4n

`+ 1
2

− 3

}
(4)

TAs: Please follow the logic flow. (a) Point out that the we need to do an integral
〈ψn`m`

|p4|ψn`m`
〉 in applying 1st order perturbation theory. (b) Show that the integral can be

related to the expectation values of V (r) and V (r)2, i.e., 〈ψn`m`
|V |ψn`m`

〉 and 〈ψn`m`
|V 2|ψn`m`

〉,
where V (r) is the Coulomb potential energy function. (c) Then invoke the following integrals〈

1

r

〉
=

∫
ψ∗n`m`

1

r
ψn`m`

d3r =
1

n2a
(5)
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and 〈
1

r2

〉
=

∫
ψ∗n`m`

1

r2
ψn`m`

d3r =
1

(`+ 1
2)n3a2

(6)

to obtain the answer. Here, a is the Bohr radius.

TAs: Illustrate how small the energy correction is, relative to E
(0)
n (for example for the

ground state) and stress that E
(1)
rel depends on n and ` in general. You may want to show

students the proof of Eqs.(5) and (6) in an appendix.

SQ7 Harmonic oscillator physics and matrix elements using operators

This serves as a review on what you did in harmonic oscillators in QM I and to prepare for
evaluating matrix elements of x, x2, x3 and x4 between harmonic oscillator wavefunctions in
applying approximation methods. Generally, we need integrals of the forms∫

ψ∗m(x) x̂α ψn(x) dx and

∫
ψ∗m(x) p̂α ψn(x) dx (7)

where ψn(x) is the n-th eigenstate of the harmonic oscillator with energy (n + 1
2)h̄ω (here

n = 0, 1, 2, . . .), and x̂ and p̂ are the position and momentum operators, respectively. Here,
TA will work out the α = 1 and α = 2 cases.

The Hamiltonian of a harmonic oscillator is:

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (8)

In this form, it is tempting to “factorize” the Hamiltonian. It is of the form of (c2 + d2) =
(c+ id)(c− id). Thus, rather “naturally”, one can define two new operators which are linear
combinations of x̂ and p̂ invoking i =

√
−1 as:

â =

√
mω

2h̄

(
x̂+

i

mω
p̂

)
â† =

√
mω

2h̄

(
x̂− i

mω
p̂

)
(9)

TA: Find the commutator [â, â†]. Show that the following Hamiltonian

Ĥ =

(
â†â+

1

2

)
h̄ω (10)

is just the harmonic oscillator Hamiltonian in Eq. (8). The form of Eq. (10) is convenient in
that there is a set of eigenstates denoted by |n〉 that satisfies â†â|n〉 = n|n〉, with n = 0, 1, 2, . . .
(non-negative integrals). Immediately, we see that

Ĥ|n〉 =

(
n+

1

2

)
h̄ω |n〉 (11)

and thus the state |n〉 is the n-th eigenstate of the harmonic oscillator. They are orthonormal.
Writing the state |n〉 out in x-coordinate gives the oscillator wavefunctions ψn(x), which are
the Hermite polynomials multiplying into a Gaussian function. More important to the purpose
here are the following properties:

â† |n〉 =
√
n+ 1 |n+ 1〉

â |n〉 =
√
n |n− 1〉 (12)
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Because of these special effects, â† is called the raising (creation) operator and â is called the
lowering (annihilation) operator.

TAs: Our goal is to work out the integrals in Eq. (7). To proceed, use Eq. (9) to express x̂
and p̂ in terms of â and â†. Hence, work out

〈m|x̂|n〉 and 〈m|p̂|n〉 (13)

which are Eq. (7) for α = 1.

Here is the physics. The integrals 〈m|x̂|n〉 and 〈m|p̂|n〉 are related to possible transitions
from state |n〉 to state |m〉 due to a perturbation such as an incident light. But 〈m|x̂|n〉 is
related to 〈m|â|n〉 which requires m = n−1 to be non-vanishing and 〈m|â†|n〉 which requires
m = n + 1 to be non-vanishing. Therefore, x̂ can only connect oscillator state n to its
neighbors n−1 and n+1. This is the take-home message. An application of the result is that
a transition between vibrational (oscillator) states due to light can only occur between state
|n〉 and the neighboring states |n − 1〉 and |n + 1〉, the so-called ∆n = ±1 selection rule.
We will use the rule in understanding molecular spectrum. [Of course, one can plug in
wavefunctions and do the integrals. It is one’s taste in judging which method is more elegant.]

TAs: Also work out 〈m|x̂2|n〉.
[Hint: An easy way is to make use of the completeness of the whole set of eigenstates, i.e.,∑
j |j〉〈j| = 1 and insert it between x̂x̂.]

Remarks (TA: Don’t work these out): How about 〈m|x̂3|n〉 or 〈m|x̂4|n〉? Easy! Keep on
inserting 1’s!

3


