
PHYS3022 APPLIED QUANTUM MECHANICS

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 10 EXERCISE CLASSES (22
- 26 March 2021)
The Sample Questions are designed to serve several purposes. They either review what you have
learnt in previous courses, supplement our discussions in lectures, or closed related to the questions
in an upcoming Problem Set. Students should be able to do the homework problems independently
after attending the exercise class. You should attend one exercise class session. You are
encouraged to think about (or work out) the sample questions before attending exercise class and
ask the TA questions.
Progress: In Week 9, we discussed the QM of stimulated absorption and emission, Einstein’s
A and B coefficients. Taking Einstein’s result on how the A and B coefficients are related, we
also found a QM formula for the spontaneous emission rate. This indirect approach by-passed the
necessity of quantizing the EM fields (photons and photons’ ground state - the vacuum). The life
time τ of an excited state is related to spontaneous emission rate as 1/A. We also discussed briefly
the idea behind lasers, although a detailed study of lasers require more quantum mechanics. This
ends the Module on Atom/Matter-Light Interaction. We will discuss the Physics of Molecules in
Week 10.

SQ20 - Quantum mechanics gives quantitatively the life time of hydrogen 2p state (see also SQ19)
SQ21 - Natural Broadening of a Spectral Line

SQ20 Life time of hydrogen 2p state - Quantum Mechanics is a quantitative theory!

In SQ19 (Week 9), TA calculated the vector r2p,1s for a hydrogen atom analytically and
considered the allowed transitions for different incident light polarizations. The quantity
r2p,1s also goes into the formulas of the transition rates and thus the A and B coefficients.
Here, we apply the result and obtain quantitatively the life time of a hydrogen atom 2p state.
The key point here is to illustrate that Quantum Mechanics is a theory that gives quantitative
results for measurable quantities.

The flow of ideas is as follows: QM gives the stimulated emission transition rate λ2→1.
Einstein introduced his B and A coefficients in 1917, prior to the establishment of QM. The
A-coefficient is related to spontaneous emission (difficult to handle within Schrödinger’s QM)
and the B-coefficient is related to stimulated processes. In QM, the formula of λ2→1 for
stimulated processes gives a formula of the B-coefficient. Einstein gave a relation between
the A-coefficient and the B-coefficient. Therefore, we can obtain a QM formula for the A-
coefficient too. The life time of an excited state is how long on average it will last if it is
“undisturbed”. The life time τ of an excited state is related to spontaneous emission and the
A-coefficient through 1/A. In summary, λ2→1 (QM) → formula of B-coefficient → formula
of A-coefficient via relation between A-coefficient and B-coefficient (Einstein) → lifetime
τ = 1/A.

Here, we consider the life time of a 2p state of hydrogen atom. We will use the result in
SQ19 to get at the life time of the 2p state of (2, 1,+1). For spontaneous emission, it can
make a transition to the ground state (final state) of (1, 0, 0). In this case, the matrix element
involved is r1s,2p (from 2p to 1s) rather than r2p,1s evaluated in SQ19.
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(a) By referring to SQ19, give r1s,2p without doing any calculation. Note that it is a vector.

(b) What we need is |r1s,2p|2, which is a scalar. Evaluate it and give the answer in terms
of Bohr radius squared.

(c) A formula of the A-coefficient (spontaneous emission) was found by using Einstein’s
result of relating A to B and then the QM result of the B-coefficient. The formula
consists of three factors: a bunch of constants, ω3 dependence, and |r1s,2p|2 dependence.
So, (i) evaluate the quantity |µ1s,2p|2 = e2|r1s,2p|2 and give the result in SI units,
i.e., in C2m2 where C is Coulomb and m is meter. This is related to the electric dipole
moment squared. (ii) Evaluate ω21 (or simply call it ω) from the energy differences of
the 2p and 1s states.

(d) For the 2p (2, 1,+1) state, the (1, 0, 0) state is the only transition down in energy. This
makes the calculation easier, because we don’t need to consider several possible final
state. The life time is then given by τ = 1/A. Thus we need to calculate A. The
formula was given in class notes. There are some constants involving h̄, c, and ε0 in
A. Plug in all the numbers to find A (in SI units) and the lifetime due to the electric
dipole mechanism. The answer is a number in seconds. The result is worthy of
remembering as it is typical of a state that can make a transition downward via electric
dipole radiation. You should appreciate that quantum mechanics works to give
a precise number for a property of a quantum state.

[Remarks: You just saw that typical life time is ∼ 10−9 s for states with allowed electric dipole
transitions downward. If such a transition is forbidden (meaning “electric-dipole forbidden”),
the life time becomes much longer as transitions will have to invoke higher multipoles. Physi-
cists have manipulated atoms and measured some exceptionally long life time. An example
of very long life-time excited state of the 1st excited state of the Helium Atom 2 2S1. It is
the spin triplet state that we discussed. Since the ground state is a spin singlet and electric
dipole mechanism does not involve a change in spin state, the spin triplet state has nowhere
to go downward in energy by the electric dipole mechanism. The experimentally measured
lifetime is 7870 seconds, a result that can be calculated accurately by QED. See Hodgman
et al. in Phys. Rev. Lett. 103, 053002 (2009). Another example is a metastable state in Mg
with lifetime of 2050 seconds (see Jensen et al. Phys. Rev. Lett. 107, 1130 (2011)). There
are more extreme cases. When electric dipole transition is forbidden, then comes magnetic
dipole, electric quadrupole, magnetic quadrupole, electric octupole processes, etc. An excited
state in 172Yb+ ion was found to have a life time of 10 years via the electric octupole transi-
tion. See Roberts et al. in Phys. Rev. Lett. 78, 1876 (1997). Of course, one needs to find a
way to excite the atom to such a state before one can study it.]

SQ21 Natural Line Broadening of a Spectral Line

Background: We consider the measured intensity from spontaneous emissions from a col-
lection of atoms, which are excited into state 2 by some way at time t = 0. The measured
emitted intensity will not have the form of I(ω) ∝ δ(ω−ω21), but with a certain width about
ω21. This is called line broadening. It is an experimental fact. There are many reasons that
contribute to line broadening. There may be collisions between the atoms, and the atoms
are also moving around with different speeds and therefore there are Doppler’s effect. These
causes can be controlled (dilute system and cool atoms down). The cause to be discussed here,
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however, cannot be avoided. This is why the consequence is called natural line broadening,
as it happens naturally.

The Signal detected: From t = 0 onwards, there will be spontaneous emission and therefore
we will detect I(t) as the signal. Each transition gives a photon of ω21 = (E2 − E1)/h̄, but
I(t) ∝ N2(t), the number of atoms in state 2 at time t that drops with time as N2(t) ∼
e−At = e−t/τ . Considering I(t) ∝ |E|2 = E∗(t)E(t), the electric field E(t) in the signal can be
represented by

E(t) = 0 for t < 0

E(t) = E0 e
−iω21te−t/2τ for t > 0 (1)

It is from E(t) as given in Eq. (1) that we get the spectrum I(ω) (how the intensity distributed
in ω) studied experimentally. The idea is E(t) → E(ω) by a Fourier Transform and then
I(ω) ∝ E∗(ω)E(ω). Done! The TAs will carry out the idea.

(a) Show that

E(ω) ≡ 1√
2π

∫ ∞
−∞
E(t)eiωtdt =

1√
2π
E0

i

(ω − ω21) + i
2τ

(2)

(b) Hence, show that

I(ω) ∝ E
2
0

2π

1

(ω − ω21)2 + 1
4τ2

(3)

(c) Show that the result can be written as

I(ω) =
Ipeak
4τ2

1

(ω − ω21)2 + 1
4τ2

=
I(ω21)

4τ2

1

(ω − ω21)2 + 1
4τ2

(4)

where Ipeak is the peak value of I and the peak is at ω = ω21.

(d) Find the ω′ (on either side of ω21, doesn’t matter which side) that will give the half-
width at half maximum. Hence, determine how the full width at half maximum
FWHM ∆ω is related to τ .

(e) Finally, rewrite the result as

I(ω) = I(ω21)

[
1

4τ2

(ω − ω21)2 + 1
4τ2

]
= I(ω21)

[
(∆ω

2 )2

(ω − ω21)2 + (∆ω
2 )2

]
(5)

The function in the brackets is the Lorentzian spectral line-shape function. Sketch
the function as a function of ω and illustrate the key features (peak, FWHM).

Important Remarks: Eq. (5) is an important result. I(ω) is a Lorzentian centered at ω12.
From an experimental spectrum, one can fit (there are softwares to do it) the Lorentzian
shape to a peak and obtain ω21 and ∆ω. Then, ∆ω is related to τ and thus the lifetime of
the excited state. The value of τ can also be used into the transition rate formulas. This
is very nice. Recall that we only considered an ideal situation. As mentioned, there are
other line broadening sources, e.g. Doppler’s broadening will give a Gaussian line shape. The
same method is used in other experiments, e.g. identifying resonance particles (short lifetime
particles) in particle physics.
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