
PHYS3022 Applied Quantum Mechanics Problem Set 4
Due Date: 18 March 2021 (Thursday) “T+2” = 20 March 2021

You should submit your work in ONE PDF file via Blackboard to the appropriate submission folder
no later than 23:59 on the due date. Follow Blackboard→ Course Contents→ Problem Sets→ Problem
Set Submission Folder.

Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

4.0.0 Mid-Term Examination (Must Read) – Please be reminded that the Mid-term Examination
will be held on 20 March 2021 (Saturday) morning at 10am - 12noon in SC L1 and L2. Details about
seating and time of arrival will be announced via emails. Those registered with me for online
version because they are away from Hong Kong will be informed of the arrangements
in due course. No more registration will be entertained after 11 March 2021.

Coverage (has been announced in a earlier email): Module on approximation methods and
Module on Physics of Atoms, including materials in class notes, lectures, sample questions, and
problem sets.

4.0 Reading Assignment.

After discussing how the picture of atomic orbitals (single-electron states) can be retained even
in many-electron atoms in second part of the module on the Physics of Atoms, we continued the
discussion on the anti-symmetric requirement on many-electron wavefunctions. The anti-symmetric
wavefunction requirement leads to the Pauli Exclusion Rule (which refers to filling of electrons into
single-electron states and therefore is less general). Through the discussion on the Helium Atom
ground state, we see that it must be a spin singlet (S = 0) state. For the Helium Atom excited
states, we have the possibility of having a symmetric spatial part to go with the spin singlet (S = 0)
and an anti-symmetric spatial part to go with the spin triplet (S = 1). We see that the indirect
Coulomb integral or exchange integral enters. It has no classical physics interpretation, but it
is crucial in determining such possibility has a lower energy. It is the origin of magnetism. We
also discussed some features of the elements organized into the periodic table. For reading on the
physical picture, see standard texts such as Modern Physics (e.g. by Taylor, Zafiratos, Dubson;
and by Harris) or Quantum Physics (e.g. by Eisberg and Resnick). These books are very good in
describing the ideas. For those who want to know more about the theory behind the independent
particle approximation using the self-consistent field (Hartree and Hartree-Fock) approximation,
see Physical Chemistry and/or Quantum Chemistry by Donald McQuarrie. For those interested
in exploring numerical calculations on atoms (molecules and solids), you may start with the free
numerical package called Quantum Espresso available on the web. Many experimental and
quantum chemistry research groups purchased a commercial software called Guassian for QM
calculations.

This Problem Set covers the discussions on Multi-electron Atoms

4.1 (15 points) Writing down the ground state wavefunction of Lithium atom (See SQ16)

Many-electron wavefunctions must be anti-symmetric with respect to interchanging two electrons.
This requirement can be readily implemented within the independent-particle approximation. There
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are single-electron states (atomic orbitals). Electrons are filled into the atomic orbitals. For two-
electron systems, we illustrated in class (helium atom ground and excited states) that the wave-
function can be factorized into a spatial part and a spin part. This factorization, however, may not
be possible for other many-electron systems.

Lithium is the 3rd element in the periodic table. It has 3 electrons. In the ground state, the three
electrons occupy the “1s-up”, “1s-down”, “2s-up”, say. We use φ1s↑, φ1s↓, and φ2s↑, to represent
these three normalized atomic states. The key point is that (i) we don’t know which electron is
in which state, and (ii) the three-electron ground state wavefunction must change a sign when two
particles are interchanged. We use 1, 2, 3 for the coordinates of the four electrons.

(a) Write down a properly normalized ground state wavefunction in the form of a Slater Deter-
minant.

(b) Argue or demonstrate that your answer in (a) is really anti-symmetric.

(c) If you were to put two electrons into 1s-up and leave 1s-down empty, what would happen
to the corresponding 3-electron wavefunction?

(d) What will be the value of the wavefunction when two electrons happen to have the same
coordinates, e.g. “1” = “2”?

(e) Although we are sure that there are electrons in “1s-up” and “1s-down”, whether the “third
electron” is in “2s-up” or “2s-down” is not sure. To take into account of our ignorance (don’t
know whether it is up or down), what would you write down as the wavefunction of the
lithium atom ground state.

4.2 (30 points) Forming two-particle states from single-particle states

Every CUHK student must do this important problem. The results will be useful in
Statistical Mechanics, Astrophysics, and cold atom physics. It is related to the simplest QM problem
– 1D particle-in-a-box. Do it yourself!

(a) Consider a particle of mass m confined in a 1D infinite well of size L, e.g. 0 < x < L. [No
derivation needed – you did it in the previous course.] Write down the normalized energy
eigenstates ψn(x) and the corresponding energy eigenvalues En. These are the single-particle
states in this problem.

(b) Forming two-particle states - distinguishable particles. Consider two distinguishable
particles of the same mass in a 1D well. The particles are non-interacting (e.g., they
are chargeless). Given that particle 1 (labelled “1” or carrying a color) is in ψm and particle
2 (labelled “2” or carrying another color) is in ψn, write down a two-particle wavefunction
ψdist(x1, x2). What is the corresponding energy eigenvalue? Find the probability that
the particles are both in the right hand side of the well, i.e., the probability that a measurement
shows L/2 < x1 < L and L/2 < x2 < L?

(c) Similar to (b), but now consider two indistinguishable (identical) particles. Don’t
worry about the spin part of the total wavefunction for the moment and focus on
the spatial part. Write down a two-particle wavefunction ψsym(x1, x2) that is symmetric
with respect to interchanging the coordinates x1 and x2 of the two particles. Hence, find the
probability that the particles are both in the right hand side of the well, i.e., the probability
that a measurement shows L/2 < x1 < L and L/2 < x2 < L?

(d) Similar to (b), but now consider two indistinguishable (identical) particles. Again, don’t worry
about the spin part of the total wavefunction for the moment and focus on the spatial part.
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Write down a two-particle wavefunction ψanti(x1, x2) that is anti-symmetric with respect
to interchanging the coordinates x1 and x2 of the two particles. Hence, find the probability
that the particles are both in the right hand side of the well, i.e., the probability that a
measurement shows L/2 < x1 < L and L/2 < x2 < L?

(e) Now compare the results in (b), (c) and (d), which symmetry has an enhanced probability
(relative to the case of distinguishable particles) of finding the two particles on the same side?
Which symmetry has a reduced probability of finding the two particles on the same side?

(f) Now if the two particles are spin-1/2 fermions and the two states are different (m 6= n). Write
down the two-fermion wavefunctions including spins that invoke (i) the symmetric
spatial wavefunction in part (c) and (ii) the antisymmetric spatial wavefunction in part (d).
What is the wavefunction when the two states are the same, i.e. m = n? [You may use
the symbols α and β for the spin-up and spin-down states, respectively.

[Read me: The two particles are non-interacting. Yet, the symmetry of the wavefunction
has an effect that seems to pull the particles closer OR to push the particles farther apart.
It looks as if the “exchange symmetry requirement” leads to an “effective force” between the
particles (either attraction or repulsion), even there is no actual interaction between them.
This is called the exchange force and it plays a fundamental role in many phenomena, e.g., the
origin of magnetism when we include spin wavefunction into consideration, and the pressure
in ideal Fermi gas.]

(g) Up to here, we assumed that the particles are non-interacting. If we are to include a repulsive
interaction modelled by V (|x1 − x2|), comment on whether the symmetric wavefunction or
the antisymmetric wavefunction would have a lower energy.

4.3 (30 points) Plotting two-particle wavefunctions - A picture is worth a thousand words
(See SQ17)

(a) MUST TRY! This problem continues on with the context in Problem 4.2.

Let’s say one particle is in the single-particle ground state state m = 1 (thus ψ1) and another
in the 1st excited state n = 2 (thus ψ2). Here you need to (find a way to) do some 3D plots.
Use your favorite graphic software and plot (i) ψdist(x1, x2), ψsym(x1, x2), and ψanti(x1, x2) as
a function of x1 and x2 for the range 0 < x1 < L and 0 < x2 < L. (ii) Plot also |ψdist(x1, x2)|2,
|ψsym(x1, x2)|2, and |ψanti(x1, x2)|2 as a function of x1 and x2 for the range 0 < x1 < L and
0 < x2 < L. Note that these are 3D plots, as one axis is x1, another is x2 and the third axis
is the quantity you want to plot. At this point, look at the plots carefully and comment on
the difference between |ψsym(x1, x2)|2 and |ψanti(x1, x2)|2.

(b) Just to convince you that what you observe in part (a) is not accidental, repeat the plots
in part (a) for one particle in the single-particle ground state m = 1 (thus ψ1) and another in
the 2nd excited state n = 3 (thus ψ3).

Intermission: Let’s review the essentials of the Helium Atom

The helium atom is the playground to learn the physics of multi-electron atoms. The helium atom
Hamiltonian in SI units is

Ĥhelium = − h̄2

2m
∇2

1 −
2e2

4πε0r1
− h̄2

2m
∇2

2 −
2e2

4πε0r2︸ ︷︷ ︸
Ĥ0

+
e2

4πε0r12︸ ︷︷ ︸
troublesome term

, (1)
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where r12 = |r1 − r2|.
The idea is (i) to avoid doing many-electron problems and (ii) to reduce many-electron (2-electron)
problems to single-electron problems. Carrying out this scheme and the picture that the two
electrons are in the lowest 1s atomic orbital for the ground state emerged. With anti-symmetric
requirement for many-electron wavefunctions, the helium atom ground state wavefunction is

ψGS(1, 2) = φ1s(r1)φ1s(r2)︸ ︷︷ ︸
symmetric spatial part

1√
2

[α(1)β(2)− α(2)β(1)]︸ ︷︷ ︸
anti−symmetric spin part

, (2)

where α represents the spin-up (ms = +1/2) state and β represents the spin-down (ms = −1/2)
state. Equation (2) is the only proper form that satisfies the anti-symmetric requirement.

We encountered the form Eq. (2) twice in the following occasions.

– Perturbation Theory - We can take the first 4 terms in Eq. (1) as the unperturbed Ĥ0

and the electron-electron interaction term (last term) as Ĥ ′. In this case, φ1s(r1)φ1s(r2) is
the solution to Ĥ0 and thus each φ1s is a hydrogen-like wavefunction, which is known. SQ14
takes on this viewpoint.

– Variational Calculation - Taking the charge in the states within φ1s(r1)φ1s(r2) as a varia-
tional parameter, a better result can be obtained. SQ15 filled in the details.

– In Hartree type approximation, φ1s(r) itself is an unknown wavefunction yet-to-be-
determined. By including an average effect of one electron in φ1s on the other electron also in
φ1s, an equation (Hartree equation) can be set up to solve for φ1s(r) self-consistently. An
Appendix in the class notes further discussed this point.

The following question is about the helium atom excited states.

4.4 (25 points) Helium Atom - Excited States (1st order perturbation theory)

This is another must try/do problem as it carries much physics.

The helium atom Hamiltonian is given in Eq. (1). The first four terms form the unperturbed
Hamiltonian Ĥ0 and the last electron-electron interaction term is the perturbation term Ĥ ′. We
discussed the idea in class notes. You will explore more here, based on the 1st order perturbation
theory, (without doing the integrals explicitly).

We now explore the lowest excited states of two electrons. For Ĥ0 (the first four terms in Eq. (1)),
it is a separable problem. Low-energy excited states can be visualized as having one electron in
1s with wavefunction φ1s and another electron in 2s with wavefunction φ2s. [You don’t need the
explicit forms of φ1s and φ2s.] But the two electrons are indistinguishable. Let α and β denote
the states of spin-up (ms = 1/2) and spin-down (ms = −1/2) of an electron, respectively.

There are two spatial wavefunctions to be considered. They are

ψs(r1, r2) = ψsinglet(r1, r2) =
1√
2

[φ1s(r1)φ2s(r2) + φ2s(r1)φ1s(r2)] (3)

ψt(r1, r2) = ψtriplet(r1, r2) =
1√
2

[φ1s(r1)φ2s(r2)− φ2s(r1)φ1s(r2)] (4)

Eq. (3) will go with a spin singlet state and Eq. (4) will go with a spin triplet state; and thus the
labels.

Your task is to examine the effect of the last term in the Hamiltonian using the two options Eq. (3)
and Eq. (4).
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(a) Let’s take the last term in Eq. (1) as the perturbation, i.e.,

Ĥ ′ =
e2

4πε0r12
(5)

Note that Ĥ ′ does not depend on spin explicitly. Don’t worry about the first 4 terms forming
the unperturbed Hamiltonian Ĥ0. It is given that E0 ≡ 〈ψs|Ĥ0|ψs〉 = 〈ψt|Ĥ0|ψt〉 = −5/2Eh,
where Eh is the Hartree (a unit of energy).

Your task is two consider the expectation value of Ĥ ′ using ψs and ψt. By applying the 1st
order perturbation theory, show explicitly that the theory gives different estimates of the
energy

Esinglet ≈ E(0) + J +K (6)

Etriplet ≈ E(0) + J −K (7)

and write down explicitly from your derivations what the integrals J and K are.

Give the interpretation of the term J . The other integral K is called the indirect Coulomb
or the exchange integral. Textbooks say that “the exchange integral is a quantum effect”.
Explain what this phrase really means.

(b) One can evaluate the integral K (at least numerically). The magnitude and the sign of K
are both important. For helium, it turns out that K > 0. Given that, which state (S = 0
or S = 1) has the lower energy and thus become the first excited state? Find the energy
difference between the triplet and the singlet states?

(c) The following statements are often made about the origin of ferromagnetism (FM) and anti-
ferromagnetism (AFM) (having atom’s magnetic moments aligned/anti-aligned) at low tem-
perature. (i) AF/AFM has their origin in Coulomb interaction between electrons (instead
of coming from some magnetic dipole-dipole interaction as discussed in EM books), (ii) it
is not the direct integral J that matters, and (iii) it is the exchange integral that matters.
Write a few sentences to illustrate your understanding of these statements based on
the calculations you carried out in this Problem.
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