PHYS3022 Applied Quantum Mechanics Problem Set 3
Due Date: 4 March 2021 (Thursday) “T+2” = 6 March 2021 (Saturday)

You should submit your work in ONE PDF file via Blackboard to the appropriate submission folder
no later than 23:59 on the due date. Follow Blackboard — Course Contents — Problem Sets — Problem
Set Submission Folder.

Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it 1s expected that we do your homework independently.

3.0 Reading Assignment.

3.1

In Part 1 of the Physics of Atoms module, we introduced various effects in atoms using the strategy
of a hydrogen atom PLUS some effects. We covered the spin-orbit interaction (and in doing so
discussed general angular momentum in QM, reviewed orbital and spin angular momenta and
introduced the total angular momentum), relativistic correction (SQ), the fine structure, Zeeman
effect, and hyperfine structure. There are two levels of understanding. Level 1 is the big picture
(key ideas). They are covered in standard textbooks on Modern Physics (e.g. by Taylor, Zafiratos,
Dubson; and by Harris) or Quantum Physics (e.g. by Eisberg and Resnick). These books are very
good in describing the key ideas. For applying QM’s mathematical and approximation methods
to these topics, see standard QM books such as Griffiths and Rae’s books. Quantum Chemistry
books (e.g. by McQuarrie and by Engel) are also good. But QM mathematical treatments should
be seasoned by the physics discussions in the Modern Physics books. In Part 2 of the module,
we will discuss the physics of atoms beyond hydrogen. The strategy is to do a high-level popular
physics treatment, i.e., making use of QM but not working out the details. For more serious
discussions on Atomic Physics, see C.J. Foot, Atomic Physics; and Mark Fox, A student’s guide to
Atomic Physics. For a detailed QM treatment, see Bransden and Joachain, Physics of Atoms and
Molecules and Quantum Mechanics.

(18 points) Counting f-states (¢ = 3) in two ways (Related to SQ9)
Consider the hydrogen atom described by
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The TISE can be solved analytically. The energy eigenstates are 1,,¢m,,m,, where the last quantum
number mg takes on +1/2 for spin-up and spin-down states. To be very explicit, the set of quantum
numbers (n,f,mg; s = 1/2,m;) label the energy eigenstates. Since the single and only electron in
hydrogen always has s = 1/2, s is usually suppressed. In class notes, we illustrated that the p-states
can be labelled in this way, i.e., using (mg, ms) to account for the six p-states. Alternatively, one
can use (j,m;) to re-label the six p-states. The later labelling is needed when there is spin-orbit
interaction, where the coupling asks for treatment through the total angular momentum J.

Now it is your turn to work on the same problem for the 4f states.

(a) Consider the 4f states, i.e., n = 4 and ¢ = 3. List out all the states using the notations
|il, 3,mg;s =1/2,ms). What is the energy of each of these states after solving the TISE with
Hy?

(b) We could linearly combine the states |4,3,ms; s = 1/2,ms) to form an equal number of
states labelled by |n =4,¢ = 3,5 = 1/2;j,m;). Using the rule of obtaining the allowed values
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of j and mj, list out all the possible states using the notations |4, 3,1/2;j,m;). Argue
that (using one example) a state |4,3,1/2;j,m;) is also an energy eigenstate of Hy and find
its energy.

[Remark: As to what the exact linear combinations are, it will be discussed in a topic ” Ad-
dition of Angular Momenta” in advanced quantum mechanics. The coefficients in the linear
combination are related to the Clebsch-Gordan coefficients. We don’t need them in our course.]

(¢c) Now consider the spin-orbit interaction represented by an additional term

= f(r)S-L (2)

where S is the spin angular momentum, L is the orbital angular momentum, and f (r)is a
function depending only on the variable 7. Use the states (many of them) |4,3,1/2;j,m;) to
form a matrix for Hy + H’, and illustrate that the j =40+ 1/2 states and the j = ¢ —1/2
states take on different energles in the presence of H/,. Give the Term Symbol for these two
groups of states. [You will go back to the 4f states in Problem 3.3.]

(10 points) Spin-orbit interaction term H’, = f(r)S

Background: The condition for two operators to share a common set of eigenstates (simultaneous
eigenstates) is that the two operators commute. This idea is the reason why we need to give up the
description using (myg, ms) and invoke the total angular momentum J and its z-component when
there is spin-orbit interaction.

The spin-orbit interaction is given by

= f(r)S-L

This term is to be added to Hatom that includes the Coulomb potentlal energy term due to the
nucleus. An example is Hy in Eq. (1) for a hydrogen atom. With Hetom alone, the electron’s
states can be labelled by (n, ¢, mg, s, ms), where s = 1/2 (always) is the spin quantum number of
an electron.

(a) Show or Argue that H’, does not commute with L. and S,. [Hint: Use the standard
commutation relations that define an angular momentum in quantum mechanics.]

(b) Show or Argue that H', commutes with L? and $2. [Remark: This is why we keep the
(¢,s =1/2) when we invoke (j,m;).

(16 points) Weak-field Zeeman splitting for f states

The aim here is (i) to lead you to review class notes on weak-field Zeeman effect, and (b) to apply
the results. You don’t need to repeat the derivation. Just jump to the result and apply it. [Hint:
We did the case of p states in class notes. Follow the discussion there and work out the case of f
states here.]

“Weak-field” means that the spin-orbit interaction term f (r)l_'; .S is more important than the
Zeeman term due to the external field. In SQ12, it was shown that the internal magnetic field
related to the spin-orbit interaction is not small. Thus, the “weak-field Zeeman effect” is rather
common. Before turning on the external field, the 4f states split into two groups according to the
value of j, as you see in Problem 3.1.

Now, an external field B in turned on. For each value of j, find the corresponding Landé
g-factor. Hence, sketch a figure for the 4f states that illustrates the cases of (i) no spin-
orbit interaction and B = 0, (ii) with spin-orbit interaction and B = 0, and (iii) with spin-orbit
interaction and a weak field B # 0.
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(18 points) Strong-field Zeeman splitting plus spin-orbit interaction for f states

This problem accompanies Problem 3.3, but the external field B 1s strong so that the Zeeman
splitting due to m, and my in the interaction term H/ y = —[r - B — s - B should be handled
first, and then followed by the spin-orbit interaction within perturbation theory. We did the case
of p-states in class notes. You will work out the case of f-states.

Review class notes, take the results and work out how the degenerate f states are affected by both
the Zeeman term and spin-orbit interaction in the strong field case. Sketch a figure illustrating
how the f states are affected by the Zeeman term only and by the Zeeman term plus the spin-orbit
interaction. [Hint: Refer to a similar figure for the p-states discussed in class notes.]

(20 points) Very strong-field Zeeman effect: from 4f to 3d

Here, let’s assume that the external magnetic field B is very strong. We need to include the effect
of the Zeeman term H’, = —ji;, - B — jig - B, but we ignore the spin-orbit interaction.

Let’s consider the transition from 4f to 3d and the corresponding spectral lines. If we ignore
spin-orbit interaction and there is no external field, we only expect one spectral line at the energy
(Esf — Esq). For the hydrogen atom, it is the energy 13.6(3 — ) eV.

Now a strong magnetic field B is turned on. For the 4f states, you may take the result from
Problem 3.4. Make a similar consideration for the 3d states. For optical transitions (light is
involved (emitting light)), the allowed transitions are those with Amgs; = 0 (meaning spin is not
involved in the transition mechanism) and Am; = 0,£1. Construct a figure to illustrate all
the possible transitions from 4 f to 3d states. Hence, find the energies involved in the transitions
and demonstrate that the result is a splitting from one line to three lines.

(18 points) Rewriting Hamiltonian of Helium Atom in Atomic Units (Related to SQ13)

SQ13 introduced the atomic units (see also an appendix in class notes). The system measures physi-
cal quantities in units of what are set by the hydrogen atom problems, i.e., typical in atomic/molecular
physics.

(a) The helium atom has its Hamiltonian in ST units given by

i h? _, 2¢? h? _, 2¢? . e?
heli = 5 - 5 -
e 2m 1 47T607“1 2m 2 47T607‘2 47T€07’12 ’

(3)

where r19 = |r; — ro| and the last term is the electron-electron interaction term that makes
the problem unsolvable. Starting from Eq. (3), rewrite the Helium atom Hamiltonian
step-by-step in atomic units.

(b) The Hamiltonian of a hydrogen-like atom /ion is given by
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where the nucleus has Z charges (meaning Ze in SI units). Show that
W(r) =Ae (5)

is an eigenstate and find the corresponding eigenvalue. Hence, give the eigenvalue in SI units.
Find the prefactor A by the normalization condition.



