
PHYS3022 Applied Quantum Mechanics Problem Set 2
Due Date: 10 February 2021 (Wednesday) “T+2” (plus holidays) = 16 February 2021

You should submit your work in ONE PDF file via Blackboard to the appropriate submission folder
no later than 23:59 on the due date. Follow Blackboard→ Course Contents→ Problem Sets→ Problem
Set Submission Folder.

Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it is expected that we do your homework independently.

2.0 Reading Assignment.

Approximation Methods: In the first module of the course, we did approximation methods
including the variational method (Problem Set 1), 1st and 2nd order non-degenerate perturbation
theory and degenerate perturbation theory. We also discussed the results in the viewpoint of
approximations starting from an exact but huge matrix representing the TISE problem. For those
who want to read more on the topics, see chapters in Griffiths’ Introduction to Quantum Mechanics,
Rae’s Quantum Mechanics, and Liboff’s Introductory Quantum Mechanics. A very practical and
lucid discussion can be found in McQuarrie’s Quantum Chemistry. You can do much physics with
these tools.

Physics of Atoms: We started the module in Week 3. We covered/will cover orbital and spin
angular momenta, total angular momentum, spin-orbit interaction, (relativistic correction), fine
structure, Zeeman effect, and hyperfine structure, using the hydrogen atom as the focus of our
discussion. There are two levels of understanding. Level 1 is the big picture (key ideas). They are
covered in standard textbooks on Modern Physics (e.g. by Taylor, Zafiratos, Dubson; and by Harris)
or Quantum Physics (e.g. by Eisberg and Resnick). These books describes the key ideas very
clearly. For applying QM mathematical and approximation methods to these topics, see the books
list in the last paragraph. I stress that these QM treatments should be seasoned by the physical
sense discussed in the Modern Physics books. Students who want to read more on Atomic Physics
may consult (undergraduate level) M. Fox, A Student’s Guide to Atomic Physics, and (beginning
postgraduate level) C.J. Foot, Atomic Physics. We covered more QM than Fox’s book, but the
book covers more topics than we can do.

This Problem Set covers the Applications of Perturbation Theories.

2.1 (25 points) Matrix elements x3mn ≡ 〈m|x̂3|n〉 and x4mn ≡ 〈m|x̂4|n〉 for harmonic oscillator
eigenstates

Background: Harmonic oscillator physics is everywhere. A reason is that when basic entities bind
and form a bigger object (atoms forming molecules/solids), the fact that they bind and have a
preferred separation R0 at equilibrium implies that the potential energy function V (r), where r is
the separation between the two basic entities (e.g. atoms), has a minimum at the r = R0. In the
vicinity of the minimum, V (r) is approximately quadratic and thus of the harmonic oscillator form.
An immediate implication is that there are anharmonic terms when r is away from R0.

(a) For simplicity, let’s consider the 1D case, shift the minimum of V (r) to r = 0 and let the
minimum value be V (0) = 0. Show that V (x) around x = 0 takes on the form

V (x) ≈ 1

2
k x2 +

1

6
γ x3 +

1

24
b x4 (1)

and find the relations between V (x) and the coefficients k, γ, and b.
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(b) The Hamiltonian of a particle of mass m under the influence of V (x) around x = 0 can be
written as

Ĥ =

(
− h̄2

2m

d2

dx2
+

1

2
mω2x2

)
+

1

6
γ x3 +

1

24
b x4 = Ĥ0 + Ĥ ′ , (2)

where ω2 = k/m. Here, Ĥ0 is the harmonic oscillator problem with exact solutions, i.e.,

Ĥ0 = − h̄2

2m

d2

dx2
+

1

2
mω2x2 (3)

with TISE being

Ĥ0ψ
(0)
n =

(
n+

1

2

)
h̄ω ψ(0)

n (4)

or

Ĥ0|n〉 =

(
n+

1

2

)
h̄ω |n〉 (5)

where ψ
(0)
n (x) or |n〉 is the n-th energy eigenstate with eigenvalue (n+ 1

2)h̄ω.

Let’s start with the simplest case of the ground state energy of Ĥ in Eq. (2). Applying

first-order perturbation theory to estimate E
(1)
0 (first order correction in energy) due to

Ĥ ′.

[Hint: You might have done the integral in Problem Set 1.]

(c) In SQ7, TA worked out the integrals (matrix elements) xmn ≡ 〈m|x̂|n〉 and x2mn ≡ 〈m|x̂2|n〉
between harmonic oscillator eigenstates. For example,

xmn ≡ 〈ψ(0)
m |x|ψ(0)

n 〉 =

∫
ψ∗(0)m (x)xψ(0)

n (x)dx = δn−1,m

√
n

2α
+ δn+1,m

√
n+ 1

2α
, (6)

where α ≡ (mω)/h̄ and δi,j is the Kronecker delta function. Physically, Eq. (6) says that

the operator x̂ can only connect the oscillator state ψ
(0)
n to ψ

(0)
n+1 and ψ

(0)
n−1, and nothing else.

Eq. (6) can be derived by either using the recursive relation of the Hermite Polynomials or the
operator method. From Eq. (6), one can also find x2mn ≡ 〈m|x̂2|n〉 (See SQ7).

Following the approach in SQ7 or otherwise, evaluate the following matrix elements

x3mn ≡ 〈m|x̂3|n〉 (7)

and
x4mn ≡ 〈m|x̂4|n〉 (8)

2.2 (22 points) Ĥ0 is a harmonic oscillator - with a quartic anharmonic term

Let’s make use of the results in Problem 2.1. Consider the anharmonic oscillator problem with
the quartic term as the perturbation

Ĥ =

(
− h̄2

2m

d2

dx2
+

1

2
mω2x2

)
+

1

24
b x4 = Ĥ0 + Ĥ ′ , (9)

where the perturbation is taken to be the quartic ∼ x4 term.
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(a) For any unperturbed states ψ
(0)
n or |n〉 of Ĥ0, evaluate the modified energy to first-order

in Ĥ ′ using perturbation theory.

[Hint: Use your answer in Problem 2.1 for the special case of x4nn. The answer has a nice and
simple closed form. Note that you have generalized the result in Problem 2.1(b) to arbitrary
unperturbed states.]

(b) Let’s consider only the ground state. Find the leading correction term (the first non-
vanishing term that has the biggest effect) to the ground state wavefunction due to the
quartic perturbative term.

2.3 (25 points) Must Do! Harmonic Oscillator with a linear term - Exact solutions versus
perturbation treatment

Here is a classic QM problem that is exactly solvable and one can compare exact results with
perturbative results. The problem is to add a linear ∼ x term to a harmonic oscillator. The
physical situation is that of a particle of mass m and charge −e under the influence of a parabolic
potential as well as a static electric field E in the x-direction. The Hamiltonian reads

Ĥ = − h̄2

2m

d2

dx2
+

1

2
mω2x2 + e Ex , (10)

where the last term is treated as the perturbation and it comes from the electrostatic potential

energy. It is linear in x. Note that the integral xmn ≡ 〈ψ(0)
m |x|ψ(0)

n 〉 (see Eq. (6) and SQ7) will be
useful.

Perturbation theory

(a) For any unperturbed states ψ
(0)
n , find the first order correction to the energy.

(b) For any unperturbed states ψ
(0)
n , find the second order correction to the energy and

show that all (i.e., any n) the states are shifted by the same amount. Hence, write down
the modified energy En up to second order.

(c) (Optional for students and TAs - NO bonus points.) For those who want to do more, work
out the modified wavefunctions to first order.

Solve the TISE problem exactly

(d) Consider x2 + ax. Once upon a time, you learned a trick called “completing the square”, i.e.,
we want to write x2 + ax into (x+ b)2 + c. Show that we can always do that and express b
and c in terms of a.

(e) Consider the Hamiltonian in Eq.(10) again. Completing the square and defining a new vari-
able x′ to replace x, show that the problem represented by Ĥ in Eq. (10) is just another
harmonic oscillator problem! Hence, give the exact values of the energies of Ĥ.

[Moral of the story is: a linear plus a quadratic term in the potential energy function
is exactly solvable.]

Comparing results

(f) Compare your perturbation result up to 2nd order with the exact result and comment.
[Hint: You will see a happy coincidence.]
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2.4 (28 points) 2D harmonic oscillator with a βxy type coupling - Degenerate perturbation
theory

In higher dimensional QM problems, degenerate states are common. Here is an example based on
harmonic oscillator. Consider a two-dimensional (2D) harmonic oscillator given by the Hamiltonian

Ĥ0 = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
mω2(x2 + y2) . (11)

You don’t need to solve it. Just go through in your mind the standard procedure of separation
of variables and then using the results of a 1D harmonic oscillator. The eigenvalues add and the
wavefunctions multiply. [If you think you want to practice the calculations again, do it! No bonus
points though.]

(a) The ground state energy is h̄ω. Write down the 2D ground state wavefunction.

(b) Consider the first excited states. Show that the corresponding energy is E(0) = 2h̄ω and
write down the two corresponding wavefunctions. So, these two states are degenerate
and 2h̄ω has a degeneracy of 2.

(c) Now consider the perturbed 2D oscillator problem given by the Hamiltonian

Ĥ = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
mω2(x2 + y2) + β x y = Ĥ0 + β x y , (12)

where the last term β x y can be treated as a perturbation. Here, β is a constant serving as a
parameter that tunes the strength of the perturbation.

We want to study how the perturbation β x y affects the two degenerate unperturbed states
corresponding to E(0) = 2h̄ω. We need to apply the degenerate perturbation theory. Set
up a 2× 2 matrix representing Ĥ using the two degenerate wavefunctions.

[Hint: You will see some familiar integrals again.]

Hence, solve for the new eigenenergies and make a sketch illustrating how the two new
energies behave as the parameter β varies.

(d) (Slightly harder) Finally, find the modified wavefunctions for the two states, in terms of
the originally degenerate states in part (b).

[Hint: Find the eigenvector of each eigenvalue.]
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