PHYS3022 Applied Quantum Mechanics Problem Set 1
Due: 25 January 2021 (Monday); “T+2” = 27 January 2021 (Wednesday) (20% discount)

You should submit your work in ONE PDF file via Blackboard to the appropriate submission
folder no later than 23:59 on the due date. Follow Blackboard — Course Contents — Problem Sets —
Problem Set Submission Folder.

Please work out the steps of the calculations in detail. Discussions among students are highly encouraged,
yet it 1s expected that we do your homework independently.

1.0

1.1

Reading Assignment. This is a guide to supplementary reading as the course proceeds. No
need to hand in anything. PHYS3022 started off with a discussion on several approximation
methods, as most real and interesting problems in QM cannot be solved analytically. The topics
are covered in standard QM textbooks, such as Griffiths’ Introduction to Quantum Mechanics
and Rae’s Quantum Mechanics. Softer (less math) discussions in books either on Modern Physics
or Quantum Physics, e.g. Modern Physics for Scientists and Engineers by Taylor, Zafiratos,
and Dubson, and Modern Physics by Randy Harris are also useful. Our treatment combines
mathematics and physical sense.

In Week 1, we wrote TISE into a huge matrix problem as an exact treatment. We will use
this exact matrix formulation many times later. The variational method, which is based on
an one-sided guessing theorem, was then introduced. A particularly useful application is to use
trial wavefunctions in the form of a linear combination of several functions. We showed that the
variational method gives a matrix problem, which can be regarded as a truncation of the huge
matrix in the exact treatment. In Week 2, we will develop the time-independent non-degenerate
perturbation theory up to second order and the degenerate perturbation theory as a by-product of
approximating the huge matrix. Griffiths and Rae’s books are both good on these topics. They
presented the derivations (of the same results) slightly differently. It is interesting to see how two
excellent authors look at a problem differently. The discussion so far points to the importance of
matrix mathematics (a bit of it) in QM. Here, you will have the chance to re-do simple matrix
math.

(16 points) Reduced Mass u, transformation, and separation of variables (See SQ3)

Background: Hydrogen atom is formally a two-body problem with a proton and electron, as
you learned in QMI last term. In QM, we often fix the proton at the origin and then study it as a
one-body problem. In doing so, a correction of replacing the bare electron mass m by the reduced
mass g is needed. Here is another example. A Hy molecule (ignoring the electrons) consists of
two nuclei connected by a bond (due to the electrons). This two-body problem can be treated
as a freely motion center-of-mass (CM) motion plus a single-body vibrational motion. The same
goes to the rotational rotation. In SQ3, TA showed that the classical equations of motion and a
linear molecule (in 1D motion) can be turned into CM part and a relative motion part, by making
transformation to the CM and relative coordinates.

Here, you will repeat the consideration for general U(zo — x1) and see what the Schrodinger
Equation turns out to be. For simplicity, consider a two-particle system in 1D, with a two-particle
interaction represented by a potential energy function U(zy — 1), i.e., depending only on the
combination (zg —x1) of the positions x; of mass m; and xy of mass m. An example is that of two
particles connected by a spring (as in a diatomic molecule). The time-independent Schrédinger



equation (TISE) is
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where the Hamiltonian H is marked.

(a) (See SQ3) You will carry out a transformation from the variables x; and zy to two new
variables X and x, where X is the center of mass coordinate and x is the relative coordinate.
The first step is to write down (see classical mechanics book if necessary) X and x in terms
of m1, mo, x1 and z3. Then carry out the transformation of the second derivatives and
show that the Hamiltonian H becomes
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and identify what M and p are in terms of m; and my. [Hint: The transformation involves
carrying out several partial derivatives.]

(b) Hence, writing ¢ = ®(X) - ¢(x), apply the method of separation of variables to TISE
to obtain two equations, one for ®(X) and another for ¢(z). Check whether ®(X) has
the form exp(iK X), indicating the center-of-mass motion is free with an energy h2K?2/2M.
[Remarks: Important concept here. For a Ny molecule in a gas, its energy has several
contributions. The freely moving CM motion is the translational part. There are rotational
and vibrational energies. The translational part gives the picture of point particles moving
around in a gas as discussed in secondary school physics (ideal gas). You saw the rotational
part in QM I as the 3D rotor problem. You have worked out the vibrational part here.
In statistical mechanics, each part has a corresponding partition function, giving rise to a
steps-like structure in the heat capacity as a function of temperature.]

1.2 (16 points) 2 x 2 matrices are important in quantum physics and they can be treated
exactly

Background: Two points here. Point #1: We showed in class that the time-independent
Schrodinger Equation (TISE) can be turned into a huge matrix problem (typically co x oo matrix
problem) using a complete set of basis functions. Each matrix element is of the form H;; — ES;;.
We also discussed that the practical approach is to truncate the problem to a smaller one. Point
#2: In addition, when a trial wavefunction in the form of a linear combination of functions is used
in a variational calculation, a matrix problem of the same elements emerges, only that the size of
the matrix is equal to that of the number of functions in the linear combination (thus smaller).
Obviously, matrices are important in QM.

Start Here. Let’s truncate the huge matrix to retain only a 2 x 2 matrix problem. That is to
say, what’s left is one value of ¢ and one value of j. Without loss of generality, the remaining 2 x 2
matrix equation takes on the form (see more in class notes under Approximation Methods):
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with Hoy = Hf, and Sp; = STy. The retention of Sj; and Sj; in Eq. (3) implies that we have

NOT assumed orthonormal properties of the basis functions yet. This form often appears in QM
problems.



(a) For non-trivial solutions of ¢; and cg, the determinant should vanish. Using this condition
to solve for the allowed values for E exactly. [Hint: It is just a quadratic equation for

(b) Very often, Eq. (3) takes on even simpler form in QM problems. Firstly, when the basis
functions are orthonormal, then S;; = ¢;; and Eq. (3) becomes
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Secondly, in some problems Hy; = E©) 4 H},, Hy = E© + Hl, (note the same E©
appears in Hyy and Hay), and His = H},, Ho1 = HYy, Eq. (5) (or Eq. (6)) becomes
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where Hj, = Ht%. In perturbation theory, these symbols have physical meanings. Typically,
E© > H! and E© > H, in physics problems, but all these do not matter here. From
Eq. (5), find the allowed values of E. [You may apply the results in (a) to this special
case, or you may solve it again.]

[Important Remarks: Your answer to part (a) (the matrix in Eq. (3)) is important to the
theory of bonding when two atoms come together to form a molecule. It is also related
to time-independent non-degenerate perturbation theory up to 2nd order. Your
answer in part (b) (the matrix in Eq. (5)) is related to the time-independent degenerate
perturbation theory. The word “degenerate” is reflected in the same E(®) that appears in
the “11” and “22” matrix elements in Eq. (5). Here, you have done what the scary name of
degenerate perturbation theory really means.]

1.3 (25 points) 2 x 2 matrices carry much physics and matrices ain’t frightening. Street-
fighting matrix math.

Background: You solved the 2 x 2 matrices that appear in QM problems in Problem 1.2 exactly.
Sometimes (quite often), we don’t even need to do the mathematics exactly. This problem serves
to remind you of the essential 2 x 2 stuffs and how useful/dirty approximation can be made.
Inspecting Eq. (4) (see above), it is an eigenvalue problem of a 2 x 2 matrix defined by the matrix
elements H;;, with 4, j = 1,2. This leads us to consider a 2 x 2 matrix of the form
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where we simply take A to be a real number. [More generally, the off-diagonal elements should
be A and A*.] The corresponding eigenvalue problem is defined by
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(a) Easiest case! When A = 0, what are the eigenvalues and the corresponding eigenvectors.
(b) Second easiest case. Now consider A # 0 and the special case of E4 = Eg = Ey. Find the
eigenvalues. For each eigenvalue, find the corresponding normalized eigenvector.

[Physics Remarks: This simple case is very important. You see the eigenvalues become
farther apart due to A # 0: one eigenvalue (energy in QM) goes down and another eigenvalue



(energy) goes up. Carry this result with you. In classical physics, this is related to
the coupling of two oscillators with identical fundamental frequency. (Actually related to
Problem 1.1, do you see that!) In QM, it is related to the theory called LCAO (linear
combinations of atomic orbitals) of diatomic molecules formed by two identical atoms. This
is an approximated form of Eq. (5) in Problem 1.3. In molecular physics, one result gives a
bonding molecular orbital (lower eigenvalue) and the other an anti-bonding molecular orbital
(higher eigenvalue). You heard of them in CHEM1070.]

(c) Consider the general case of E4 # Ep. We assume E4 < Ep without loss of generality.
Find the eigenvalues and call them E; and F». Identify E; as the eigenvalue that is closer
to E4 and FEs the one closer to Eg. For Ey and Es, find the corresponding eigenvectors. At
this point, we handled the 2 x 2 problem in Eq. (7) exactly (as you did in Problem 1.2).

(d) Very important, poor person’s perturbation theory, must do! Let’s assume that
|A| < |Ep — E4l, ie.,, E4 and Ep are well separated and A is much smaller than
the separation. Then there exists a small parameter in the problem. Starting with the
exact expressions for the two eigenvalues in part (c), expand the square root (something
like (1 + :1:)1/ 2 for small z) and find approximate expressions for the two eigenvalues E;
and EQ.

Hence, draw a picture to illustrate the following physical picture that emerges from the
math in your answer: (i) the lower eigenvalue E 4 is altered by an amount A?/(E4—Ep) and it
is “pushed down”; (ii) the higher eigenvalue Ejp is altered by an amount A?/(Ep—E,4) and it
is “pushed up”; and both shifts are due to the small coupling A (recall that |A| < |[Ep—FE4|
is assumed) between the two states of eigenvalues E4 and Ep.

[Take-home message: Higher state being pushed up (by lower state) and lower state being
pushed down (by higher state), and memorize the approximated eigenvalue expressions. This
is street-fighting matrix math.]

(e) If all these are too abstract, find the eigenvalues of

12 A
(25) ®)
for A =2 and A = 0.5. For each case, compare the exact eigenvalues with the approximated
values using the formulas in part (d).

1.4 (23 points) Variational Method: Harmonic oscillator

Background: The variational theorem says that (H), > Egg, i.e., the energy expectation value
of any trial wavefunction is higher or at best equal to the actual ground state energy of a given
problem (given Hamiltonian). Depending on the trial wavefunction, (H)4 can be way above or
very close to Fgg.

Consider a 1D harmonic oscillator. The Hamiltonian is

(9)

where the first term is the kinetic energy and the second term is the potential energy. The problem
was solved exactly in QMI. Here, we pretend that we don’t know the exact solution. We will use
the variational method and at the same time try to gain some quantum sense.

(a) Exercising good physics sense, we expect the ground state wavefunction to (i) be even about
x = 0 (center of potential) as the potential energy is even, (ii) have no node, and (iii) have



a peak at x = 0 and fall off on both sides. So, it will be reasonable to start with a trial
wavefunction of the form

Duriat(w) = A e (10)

where A is a prefactor (normalization), and A can be used as a variational parameter.

A~

Evaluate the energy expectation value (H) as a function of the parameter A using ¢siq;-
Hence, identify from the answer which term is the expectation value of the kinetic energy

A~

(T') and which term is the expectation value of the potential energy (V).

(b) Discuss the role of the parameter A in Eq. (10) in tuning the form of the wavefunction, i.e.,
how does the form change when A goes from big to small?

(¢) Discuss how (T") and (V) vary as A changes. In particular why do the two terms behave
differently? With this understanding, argue that there exists an optimal (best) value of A

for which (H) = (T) + (V) is a minimum. [Hint: A sketch may help.]

(d) By varying A, find the best estimate of the ground state energy. Hence, write down the
trial wavefunction using the determined best value of A\. Comment on your answer in light
of the exact solution.

1.5 (20 points) Potential energy of Quartic form - Variational Method

Consider a Hamiltonian in which the potential energy function is quartic in z, i.e.,
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which describes a particle of mass m under the influence of a potential energy of the form ~ x?.

Solving TISE is hard.

Following the physical sense conveyed in Problem 1.4, let’s use a trial wavefunction of the form
(z) = Ae ™" (12)

again, with A being the variational parameter. Apply the variational method to estimate the
ground state energy.

[Hint: This problem may be harder. You need to do integrals involving % between the trial
wavefunctions. You may find some useful integrals in the chapter on harmonic oscillators in your
PHYS 3021 last term (see your class notes). Of course, we may look up some formulas (Gaussian
integrals) for similar integrals and apply them here instead of doing the integrals from scratch.]



