

# **STZ Theory of Amorphous Plasticity**

#### **Michael L. Falk**

Materials Science and Engineering Whiting School of Engineering Johns Hopkins University



#### **STZ Picture**





#### CUHK-ITP Mini Workshop

## **STZ Picture**







- STZs have a particular orientation. They are susceptible to shear to the extent that the shear is along this direction.
- STZs are reversible until their environment rearranges. They behave as 2-state systems.
- STZs are transient. They can be created and destroyed by neighboring plastic activity.

#### **Homogeneous MD Simulations**



WHITING SCHOOL OF ENGINEERING

## **Shear Bands in Granular Media**

#### (with W. Losert and M. Toyia)

- Taylor-Couette cell
- 102mm inner cylinder
- 44mm gap
- 1mm beads or 2mm beads
- Inner cylinder rotated 4-8 mm/s
- Top surface monitored with high speed camera
- Torque measured at inner cylinder



#### MLF, M. Toiva, W. Losert, arxiv:0802.1752 (2008)

WHITING

IOHNS HOPKINS LINIVERSITY

## **Shear Bands in Granular Media**

#### (with W. Losert and M. Toyia)

WHITING SCHOOL OF ENGINEERING JOHNS HOPKINS UNIVERSITY

- Taylor-Couette cell
- 102mm inner cylinder
- 44mm gap
- 1mm beads or 2mm beads
- Inner cylinder rotated 4-8 mm/s
- Top surface monitored with high speed camera
- Torque measured at inner cylinder



March 12, 2008

#### **STZ Model: Transient granular flow**



- The physics of this system is much different:
  - No internal time scale, requires everything to be slaved to the motion of the inner cylinder. So a' denotes da/dΘ, where Θ is the angle of the inner cylinder.
  - The stress is inhomogeneous  $\sigma_{r\theta}(r)$ .
  - We can assume that through cyclic loading the dilational degrees of freedom, described by  $\chi$ , are in steady state.
  - However, during the transient following reversal the orientational degrees of freedom, described by m, are not.

$$\begin{split} \varepsilon_{r\theta}'\left(s_{r\theta}, m_{r\theta}\right) &= e^{-1/\chi_{\infty}} f\left(s_{r\theta}, m_{r\theta}\right) = \gamma \varepsilon_0 C\left(\frac{s_{r\theta}}{s_y}\right) \left[\operatorname{sign}\left(s_{r\theta}\right) - m\right] \operatorname{sign}\left(\frac{d\Theta}{dt}\right) \\ m'\left(\tilde{s}, m\right) &= \frac{\varepsilon_{r\theta}'\left(s_{r\theta}, m\right)}{\varepsilon_0} \left(1 - \frac{s_{r\theta}m}{s_y}\right) \end{split}$$

MLF, M. Toiya, W. Losert, arxiv:0802.1752 (2008)

March 12, 2008

2008 APS March Meeting

#### **STZ Model: Transient granular flow**

$$\begin{split} \varepsilon_{r\theta}'\left(s_{r\theta}, m_{r\theta}\right) &= e^{-1/\chi_{\infty}} f\left(s_{r\theta}, m_{r\theta}\right) = \gamma \varepsilon_0 C\left(\frac{s_{r\theta}}{s_y}\right) \left[\operatorname{sign}\left(s_{r\theta}\right) - m\right] \operatorname{sign}\left(\frac{d\Theta}{dt}\right) \\ m'\left(\tilde{s}, m\right) &= \frac{\varepsilon_{r\theta}'\left(s_{r\theta}, m\right)}{\varepsilon_0} \left(1 - \frac{s_{r\theta}m}{s_y}\right) \end{split}$$

We must also define the function C Bouchbinder, Procaccia and Langer, PRE **75**, 036107 (2007)

$$C\left(\tilde{s};\zeta\right) = \frac{\left|\tilde{s}\right|^{\zeta+1}}{\sqrt{2\pi\zeta}} \exp\left[-\zeta\left(\left|\tilde{s}\right|-1\right)\right] + \left(\left|\tilde{s}\right|-1-\zeta^{-1}\right)P\left(\zeta+1,\zeta\left|\tilde{s}\right|\right)$$

Now 4 parameters must be specified

- The radius, r<sub>y</sub>, at which s=s<sub>y</sub>.
  (116mm for 1mm beads, 127mm for 2mm beads)
- The stress distribution of the STZs,  $\zeta$  . (100)
- The strain per STZ ,  $\varepsilon_0$ . (4% for 1mm beads, 0.5% for 2mm beads)
- γ, the attempt frequency per rate of rotation of the inner cylinder, dΘ/dt. (18000)

## **Comparison to Experimental Data**

- The blue dots represent experimental measurements of displacement at a specified radial position, plotted as a function of the inner cylinder displacement subsequent to shear reversal.
- The red lines are the STZ predictions given the assumptions on the previous slides.



MLF Ms Toiva, W Losert, arxiv:0802.1752 (2008)

WHITING

IOHNIC HODKING I

#### **Stress vs. Time** (blue=data, red=theory)

WHITING SCHOOL OF ENGINEERING



#### **Granular Shear Bands**



- Shear bands observed a granular medium in a Taylor-Couette cell arise due to a different mechanism than the shear bands in the metallic glass.
- These shear bands arise due to the inhomogeneous stress field, which is higher at the inner cylinder.
  - The transient broadening of the shear band subsequent to shear reversal can be understood via the dynamics of the *m* parameter in the STZ theory, which describes STZ orientation.



MLF, M. Toiya, W. Losert, arxiv:0802.1752 (2008) 2008 APS March Meeting

March 12, 2008

## **Simulations in Simple Shear (2D)**





#### **2D Simple Shear: Broadening**





#### **Shear Band MD Simulations**



WHITING SCHOOL OF ENGINEERING

#### **Scaling Results**





#### **Numerical Results**



M Lisa Manning and JS Langer, PRE, 76, 056106(2007)



![](_page_15_Figure_4.jpeg)

![](_page_15_Figure_5.jpeg)