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Dynamics
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Plasticity in 
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Mechanics of Materials

	Yet I "all say it and will affirm %at, even 
if & imperfections 'd not ex(t and ma)er 
were absolutely perfect, unalterable, and free 
from all accidental va*ations, +ill & mere 
fact %at it ( ma)er makes & lar-r 
machine, built of & same mate*al and in 
%e same propo.ion as & smaller, 
correspon'ng wi% exactness to & smaller in 
every respect except %at it will not be so +rong 
or so res(tant again+ violent treatment; %e 
lar-r & machine & greater & weakness.	

Galileo Galilei, 
Dialogues Concerning the Two New Sciences, 1638
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Typical Mechanical Behavior

•  What quantities can we measure that give 
measures of a material’s response?
•  Elastic modulus – stiffness
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Typical Mechanical Behavior

•  What quantities can we measure that give 
measures of a material’s response?
•  Yield Stress – Onset of Irreversibility

Fo
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e

Elongation
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Typical Mechanical Behavior

•  What quantities can we measure that give 
measures of a material’s response?
•  Strength – Maximum stress attainable

Fo
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e

Elongation
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Typical Mechanical Behavior

•  What quantities can we measure that give 
measures of a material’s response?
•  Ductility – Strain to failure
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e

Elongation
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Typical Mechanical Behavior

•  What quantities can we measure that give 
measures of a material’s response?
•  Toughness – Energy expended per unit crack advance

Fo
rc
e

Elongation
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Characterizing Materials

•  Different loadings can produce different values.
•  What quantities can we measure that give 

invariant measures of a material’s response?
•  How do we define and quantify these?
•  What are the origins of these properties?
•  Can we predict these from first principles?
•  Fundamentally, how do we express material response?
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Mechanics  Materials 

Statistical Physics 

Navier- 
Stokes 

Continuum  
Elasticity 

Dislocation 
Theory 

Structure- 
Property 
Relations 

Theory of  
simple liquids 

Critical 
Phenomena 

Defects, not average 
Properties dictate  

mechanical  response 

Conservation laws 
and elegant closures 

lead to tractable theories 

Collective behavior arising 
from interacting particles 

leads to emergent 
phenomena 

Schools of Thought



Challenge for Physicists
•  How do we connect macro-scale theory to 

micro-scale physics?
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Crystals

Farid Abraham (IBM), Mark Duchaineau and 
Tomas Diaz De La Rubia (LLNL)



Challenge for Physicists
•  How do we connect macro-scale theory to 

micro-scale physics?
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Amorphous Solids

ML Falk, PRB 60, pp. 7062 (1999)
ML Falk, JS Langer, PRE 

57, pp. 7192 (1998)



Fundamentals: Strain

•  Consider a body, where each material point is 
denoted in space by its initial location, x.

•  After deformation each material point is at a new 
location, y.

•  Define the displacement as u(x)=y(x)-x 
•  Define the deformation gradient at x as the 3x3 

tensor                  or equivalently 

+  + 
x 

y(x) 

  

€ 

F =∇y x( )

€ 

Fij = ∂yi ∂x j
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Fundamentals: Strain

•  The deformation gradient, F,  can be used to map a small 
displacement on the original body to the deformed body as

•  In other words 
•  Any orthonormal frame (e1, e2, e3) becomes a linearly 

independent triad (Fe1, Fe2, Fe3) in the deformed body 
•  The determinant of this new triad gives the !

local change in volume due to deformation.

x 
y(x) 

€ 

y x + δe( ) = y x( ) +∇yδe +O δ 2( )
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+  + 

  

€ 

y x + Δx( ) − y x( ) ≈ FΔx

e is a unit 
vector 

  

€ 

det F =
V + ΔV
V

+  + 



Fundamentals: Strain

•  We can also use this formalism to extract the changes in 
length to first order

•  If the body is rigid then F must be a rotation and
•  Under more general conditions the on-diagonal terms in the 

matrix        are related to length changes of “fibers” along 
the principal axes, while the off-diagonal elements are 
related to changes in angles between these “fibers”.

x 
y(x) 

  

€ 

lim
δ →0

y x + δe( ) − y x( )
2

δ 2
= Fe ⋅ Fe = FTF
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+  + +  + 

  

€ 

FTF = I

  

€ 

FTF



Lagrangian Strain  Eulerian Strain 

Fundamentals: Strain

•  The object C=FTF is known as the Green deformation tensor
•  We can define the Lagrangian strain E=½(C-I)
•  Defined in the undeformed body’s coordinates.

•  Strain can be defined in the deformed body’s coordinates.!
This is known as the Eulerian strain

•  It is typical to consider deformation of solid bodies in a 
Lagrangian framework.  

•  Fluid mechanics is typically considered in an Eulerian 
framework.
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€ 

E ij =
1
2
∂ui
∂x j

+
∂u j
∂x i

+
∂uk
∂x i
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∂x j
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E ij
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Lagrangian Strain  Eulerian Strain 

Fundamentals: Strain

•  For applications in which the deformation is small, the third 
term on the RHS is negligible and the deformation can be 
expressed in terms of an “infinitesimal strain”

8 Sept 08 17CUHK-ITP Mini Workshop

  

€ 

E ij =
1
2
∂ui
∂x j

+
∂u j
∂x i

+
∂uk
∂x i

∂uk
∂x j

 

 
 

 

 
 

  

€ 

E ij
* =

1
2
∂ui
∂y j

+
∂u j
∂y i

−
∂uk
∂y i

∂uk
∂y j

 

 
 

 

 
 

Infinitesimal Strain 

€ 

εij =
1
2
∂ui
∂x j

+
∂u j
∂x i

 

 
 

 

 
 



Fundamentals: Strain

Uniform Dilation Simple Extension
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Pure Shear

€ 

εij =

α 0 0
0 α 0
0 0 α

 

 

 
 
 

 

 

 
 
 

€ 

u x( ) =α x − x0( )

€ 

εij =

λ 0 0
0 0 0
0 0 0

 

 

 
 
 

 

 

 
 
 

€ 

u x( ) = λ e1 ⋅ x − x0( )[ ]e1

€ 

εij =

0 γ 0
γ 0 0
0 0 0

 

 

 
 
 

 

 

 
 
 € 

u x( ) =
γ e1 ⋅ x − x0( )[ ]e2{
+ e2 ⋅ x − x0( )[ ]e1}



Fundamentals: Stress

•  The forces on a body can be separated into 
body and surface forces

•  Cauchy’s Theorem:∃a sym. tensor σij such 
that 

•  Which, by the divergence theorem implies that

•  In equilibrium this reduces to
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€ 

F P( ) = b y( )dVy
P
∫ + s y,n y( )( )dAy

∂P
∫ = ρ y( )˙ ̇ u y( )dVy

P
∫

Ω y(Ω)P 

∂P 

€ 

s y,n y( )( ) =σ y( ) ⋅n y( )

  

€ 

0 = ρ y( )˙ ̇ u y( ) − b y( ) −∇ ⋅σ[ ]dVy
P
∫

€ 

ρ̇  ̇ u i = bi +
∂σ ij

∂x j

€ 

bi +
∂σ ij
∂x j

= 0



Fundamentals: Thermodynamics

•  Work done (integrate force x velocity)

•  If energy stored in the material per unit volume 
is denoted ψ then the energy dissipated is
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€ 

W = bi˙ u i +
∂σ ij

∂x j

˙ u i
 

 
 

 

 
 dV

P
∫ = bi˙ u i −σ ij

∂˙ u i
∂x j

 

 
 

 

 
 dV

P
∫ = bi˙ u i −σ ij ˙ ε ij[ ]dV

P
∫

    

€ 

D = bi˙ u i −σ ij ˙ ε ij − ˙ ψ [ ]dV
P
∫ ≥ 0



The Missing Ingredients

•  At this point, assuming 3D, we have a 
displacement field from which we can 
derive the strain (3 unknowns

•  We have a stress (6 unknowns)
•  We also have equilibrium (3 equations)
•  Since the problem remains 

underdetermined we need a set of 
equations that will relate the stresses to the 
strains, and thereby to the displacement 
field.

•  These equations are known as constitutive 
equations.
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€ 

bi +
∂σ ij
∂x j

= 0

€ 

εij = 1
2

∂u i
∂x j

+
∂u j
∂x i[ ]

€ 

σ ij



Linear Elasticity

•  Linear elasticity is the simplest constitutive equation and 
assumes proportionality between stress and strain

8 Sept 08 CUHK-ITP Mini Workshop 22

S
tr
es

s

Strain



Linear Elasticity

•  Linear elasticity is the simplest constitutive equation and 
assumes proportionality between stress and strain

•  If the material is isotropic this reduces to a simpler equation

•  Here µ is the shear modulus and the bulk modulus K is related 
to µ  and λ by

•  Since the energy per unit volume is given by!
assuming no body forces 
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€ 

σ ij = Cijklεkl , σ ij =
∂ψ
∂εij

€ 

σ ij = 2µεij + λεkkδij

€ 

1
3σ ii = 2

3µ + λ( )εii = Kεii

€ 

ψ = 1
2εijCijklεkl

  

€ 

d =σ ij ˙ ε ij − ˙ ψ = 0



S
tr
es

s

Strain

Viscoelasticity

•  Viscoelasticity introduces dissipation by allowing the stress to 
be strain rate dependent
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Viscoelasticity

•  Viscoelasticity introduces dissipation by allowing the 
stress to be strain rate dependent

•  To assure compliance with 2nd law of 
thermodynamics

•  One reasonable choice would be

•  Which we could cast as a “dissipative potential”

•  Any choice of φ that is convex and minimized at 0 will 
satisfy thermodynamics

8 Sept 08 CUHK-ITP Mini Workshop 25

€ 

σ ij =
∂ψ
∂εij

+σ ij
diss

€ 

σ ij
diss =η˙ ε ij

€ 

φ = 1
2η˙ ε 2 ,   σ diss =

∂φ
∂˙ ε 

  

€ 

d =
∂ψ
∂εij

+σ ij
diss

 

 
  

 

 
  ̇  ε ij − ˙ ψ   =   ∂ψ

∂εij

˙ ε ij +σ ij
diss˙ ε ij − ˙ ψ   =   σ ij

diss˙ ε ij   ≥   0
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Plasticity

•  In plasticity (as opposed to elasticity) the 
material deforms irreversibly.
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Plasticity

•  In plasticity (as opposed to elasticity) the 
material deforms irreversibly.

•  This implies that the material does not retain 
memory of the initial state.

•  This argues for models in which the change in 
the internal state of the material is an intrinsic 
feature of the theory.
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The Yield Surface

•  Deformation takes place in shear, not dilation, so the 
operative stress is the deviatoric stress, s
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× 

Yield 
Surface  Direc9on of 

hydrosta9c loading 

Principal 
Stress 
Axes 

σ

€ 

 s =σ − 1
3 Trσ( )I

s 



Plasticity

•  Traditional plasticity theories consider the yield stress to be 
such an intrinsic property

•  To determine how the plastic strain evolves it is postulated that 
there exists a yield criterion f(σ,ζ) such that
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€ 

ε u[ ] = εel + ε pl

σ = Cεel = C ε u[ ] −ε pl( )

€ 

f σ ,ζ( ) = s −ζ
f σ ,ζ( ) < 0 :   purely elastic response
f σ ,ζ( ) = 0 :   ζ evolves to remain on yield surface



Plasticity
•  Two functions describe how the yield surface will evolve

•  Given these assumptions we want to determine the unknown 
strain increment     when we are on the yield surface
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€ 

˙ ε pl = ˙ γ 
∂f σ ,ζ( )
∂σ

= ˙ γ N σ ,ζ( ),  ˙ γ ≥ 0

˙ ζ = ˙ γ h σ ,ζ( )

€ 

0 = ˙ f =
∂f
∂σ

⋅ ˙ σ +
∂f
∂ζ

˙ ζ =
∂f
∂σ

⋅C ˙ ε − ˙ ε pl( ) +
∂f
∂ζ

˙ ζ 

0 = N ⋅C˙ ε − ˙ γ N ⋅CN + ˙ γ ∂f
∂ζ

h

˙ γ = N ⋅C˙ ε 

N ⋅CN −
∂f
∂ζ

h
=

N ⋅C˙ ε 
N ⋅CN + H σ ,ζ( )

,  when N ⋅C˙ ε > 0

€ 

˙ γ 



Perfect Plasticity
•  Consider one particular case where H=0

•  Given these assumptions we want to determine the unknown 
strain increment     when we are on the yield surface
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€ 

˙ ε pl = ˙ γ 
∂f σ ,ζ( )
∂σ

= ˙ γ N σ ,ζ( ),  ˙ γ ≥ 0

˙ ζ = 0

€ 

˙ γ = N ⋅C˙ ε 
N ⋅CN

,  when N ⋅C˙ ε > 0

˙ σ = C ˙ ε − ˙ ε pl( ) =
0,     N ⋅C˙ ε > 0
C˙ ε ,   N ⋅C˙ ε ≤ 0
 
 
 

€ 

˙ γ 
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Isotropic Hardening
•  Consider one particular case where !

H=h=const

•  Given these assumptions we want to determine the unknown 
strain increment     when we are on the yield surface
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€ 

˙ ε pl = ˙ γ 
∂f σ ,ζ( )
∂σ

= ˙ γ N σ ,ζ( ),  ˙ γ ≥ 0

˙ ζ = ˙ γ h

€ 

˙ γ = N ⋅C˙ ε 
N ⋅CN + h

, when N ⋅C˙ ε > 0

˙ σ = C ˙ ε − ˙ ε pl( ) =
hC˙ ε 

N ⋅CN + h
 

 
 

 

 
 ,     N ⋅C˙ ε > 0

C˙ ε ,                    N ⋅C˙ ε ≤ 0

 
 
 

  

€ 

˙ γ 
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A Critical Assessment

•  What is missing from this picture of plasticity?
•  Rate dependence
•  A relation between the internal variables (in this 

case the yield stress ζ) and microscopic physics 
of deformation and microstructural evolution

•  As such the theory remains entirely empirical

•  The reason this is a suitable problem for 
physicists, is that we don’t yet have tools suitable 
for abstracting our understanding of material 
microstructure to inform continuum theory.
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Material Failure

Fracture Shear Banding

8 Sept 08 CUHK-ITP Mini Workshop 34

Sparks during fracture of Zr based !
bulk metallic glass

From C.J. Gilbert, APL 74, 3809 (1999).
“Hardness and plastic deformation in a 

bulk metallic glass”
Ramamurty, Jana, Kawamura, 

Chattopadhyay, Acta Materialia (2005)



Material Failure

Fracture Shear Banding
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ML Falk, PRB 60, pp. 7062 (1999)

Y Shi, ML Falk, Acta Mat  55, pp. 4317 (2007)



Material Failure

•  Understanding material failure, including 
fracture and shear banding, involves additional 
analysis

•  Fracture – Energy input and instabilities 
associated with surface creation during growth 
of existing flaws

•  Shear Bands – Plastic instabilities associated 
with material softening
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