

THE CHINESE UNIVERSITY OF HONG KONG Department of Physics COLLOQUIUM

First Galaxies in Cold, Warm, and Fuzzy Dark Matter Cosmologies

by

Dr. Philip MOCZ Department of Astrophysical Sciences Princeton University, USA

Date: November 3, 2020 (Tuesday) Time: 10:30 - 11:30 a.m. Join ZOOM Meeting: <u>https://cuhk.zoom.us/j/94744937941</u>

ALL INTERESTED ARE WELCOME

Abstract

The near-century-old dark matter (DM) problem is one of the most intriguing mysteries in modern physics. I discuss how the first galaxies that form in the Universe are a unique probe for the nature of dark matter. These first objects form in low-mass DM potential wells, probing the behavior of DM on kiloparsec (kpc) scales. I present pioneering simulations of what the young Universe would look like if DM were ultra-light, in the so-called 'fuzzy dark matter' (FDM) limit where DM is a ~10^-22 eV boson, and contrast this against Warm and Cold DM models. The simulations highlight the interplay between baryonic physics and unique wavelike features inherent to FDM, including a new nonlinear formation channel for solitons. Future telescopes like the James Webb will soon offer an observational window into this emergent world. I will further discuss a variety of other small-scale astrophysical consequences of FDM due to its unique substructure, which place independent constraints on the FDM particle mass. I present prospects to validate or rule out FDM.