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The community structure and motif-modular-network hierarchy are of great importance for understanding
the relationship between structures and functions. We investigate the distribution of clique degrees, which are
an extension of degree and can be used to measure the density of cliques in networks. Empirical studies
indicate the extensive existence of power-law clique-degree distributions in various real networks, and the
power-law exponent decreases with an increase of clique size.
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The discovery of small-world effects �1� and scale-free
properties �2� triggered an upsurge in the study of the struc-
tures and functions of real-life networks �3–7�. Previous em-
pirical studies have demonstrated that most real-life net-
works are small world �8�; that is to say, they have a very
small average distance like completely random networks and
a large clustering coefficient like regular networks. Another
important characteristic in real-life networks is the power-
law degree distribution—that is, p�k��k−�, where k is the
degree and p�k� is the probability density function for the
degree distribution. Recently, empirical studies reveal that
many real-life networks, especially biological networks, are
densely made up of some functional motifs �9–11�. The dis-
tributing pattern of these motifs can reflect the overall struc-
tural properties and thus can be used to classify networks
�12�. In addition, the networks’ functions are highly affected
by these motifs �13�. A simple measure can be obtained by
comparing the density of motifs between real networks and
completely random ones �12�; however, this method is too
rough and thus still under debate now �14,15�. In this paper,
we investigate the distribution of clique degrees, which are
an extension of degree and can be used to measure the den-
sity of cliques in networks.

The word clique in network science equals the term com-
plete subgraph in graph theory �16�; that is to say, the m
order clique �m-clique for short� means a fully connected
network with m nodes and m�m−1� /2 edges. Define the
m-clique degree of a node i as the number of different
m-cliques containing i, denoted by ki

�m�. Clearly, a 2-clique is
an edge and ki

�2� equals the degree ki; thus, the concept of
clique degree can be considered as an extension of degree
�see Fig. 1�. We have calculated the clique degree from order
2 to 5 for some representative networks. Figures 2–8 show
the clique-degree distributions of seven representative net-
works in logarithmic binning plots �17,18�; these are the In-
ternet at the autonomous systems �AS� level �19�, the Internet
at the routers level �20�, the metabolic network of P.aerugi-
nosa �21�, the World-Wide-Web �22�, the collaboration net-

work of mathematicians �23�, the protein-protein interaction
networks of yeast �24�, and the BBS friendship networks at
the University of Science and Technology of China �USTC�
�25�. The slopes shown in those figures are obtained by using
a maximum-likelihood estimation �26�. Table I summarizes
the basic topological properties of those networks.

Although the backgrounds of those networks are com-
pletely different, they all display power-law clique-degree
distributions. We have checked many examples �not shown
here� and observed similar power-law clique-degree distribu-
tions. However, not all the networks can display higher-order
power-law clique-degree distributions. Actually, only the
relatively large networks could have a power-law clique-
degree distribution with order higher than 2. For example,
Ref. �21� reports 43 different metabolic networks, but most
of them are very small �N�1000�, in which the cliques with
order higher than 3 are exiguous. Only the five networks
with most nodes display relatively obvious power-law
clique-degree distributions, and the case of P.aeruginosa is
shown in Fig. 4. Note that, even for small-size networks, the
high-order clique is abundant for some densely connected
networks such as technological collaboration networks �27�
and food webs �28�. However, since the average degree of
the majority of metabolic networks is less than 10, the high-
order cliques could not be expected with network size N
�1000. Furthermore, all empirical data show that the power-
law exponent will decrease with an increase of clique order.
This may be a universal property and can reveal some un-
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FIG. 1. Illustration of the clique degree of node i. ki

�2�=7, ki
�3�

=5, ki
�4�=1, and ki

�5�=0.
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FIG. 2. �Color online� Clique-degree distributions of the Internet
at the AS the level from order 2 to 5, where k�m� denotes the
m-clique degree and N�k�m�� is the number of nodes with m-clique
degree k�m�. In each panel, the marked slope of the red line is ob-
tained by using maximum likelihood estimation �26�.

FIG. 3. �Color online� Clique-degree distributions of the Internet
at the routers level.

FIG. 4. �Color online� Clique-degree distributions of the meta-
bolic network of P.aeruginosa.

FIG. 5. �Color online� Clique-degree distributions of the
World-Wide-Web.

FIG. 6. �Color online� Clique-degree distributions of the col-
laboration network of mathematicians.

FIG. 7. �Color online� Clique-degree distributions of the
protein-protein interaction networks of yeast.
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known underlying mechanism in network evolution.
In order to illuminate that the power-law clique-degree

distributions with order higher than 2 could not be consid-
ered as a trivial inference of the scale-free property, we com-
pare these distributions between original USTC BBS friend-
ship network and the corresponding randomized network.
Here the randomizing process is implemented by using the
edge-crossing algorithm �12,29–31�, which can keep the de-
gree of each node unchanged. The procedure is as follows:
�i� Randomly pick two existing edges e1=x1x2 and e2=x3x4,
such that x1�x2�x3�x4 and there is no edge between x1
and x4 as well as x2 and x3. �ii� Interchange these two edges;
that is, connect x1 and x4 as well as x2 and x3, and remove the
edges e1 and e2. �iii� Repeat �i� and �ii� for 10M times.

We call the network after this operation the randomized
network. In Fig. 9, we report the clique-degree distributions
in the randomized network. Obviously, the 2-clique degree
distribution �not shown� is the same as that in Fig. 8. One
can find that the randomized network does not display
power-law clique-degree distributions with higher order; in
fact, it has very few 4-cliques and none 5-cliques. The direct
comparison is shown in Fig. 8.

The discoveries of new topological properties accelerate
the development of network science �1,2,7,9,32–34�. These
empirical studies not only reveal new statistical features of
networks, but also provide useful criteria in judging the va-
lidity of evolution models. �For example, the Barabási-Albert
model �2� does not display high-order power-law clique-
degree distributions.� The clique degree, which can be con-
sidered as an extension of degree, may be useful in measur-
ing the density of motifs; such subunits not only play a role
in controlling the dynamic behaviors, but also refer to the
basic evolutionary characteristics. More interesting, we find
that various real-life networks display power-law clique-
degree distributions of decreasing exponent with the clique
order. This is an interesting statistical property, which can
provide a criterion in the studies of modeling.

It is worthwhile to recall a prior work �13� that reported a
similar power-law distribution observed for some cellular
networks. They divided all the subgraphs into two types.
Moreover, they derived the analytical expression of the
power-law exponent �m� for m-clique degree distribution as
�13� �m� =1+ ��−1� / �m−1−��m−1��m−2� /2�, where � de-
notes the power-law exponent of clustering-degree correla-
tion C�k��k−�. Table II displays the predicted power-law
exponents �m� , compared with the empirical observation �m.
For the type-I cases, the predicted results are, to some extent,
in accordance with the empirical data. Note that, although
the power law is detected for type-II cases, the analytical
expression of �m� loses its validity in those cases. The quali-
tative difference in type-II cases and quantitative departure in
type-I cases may be attributable to the structural bias �e.g.,
assortative connecting pattern �32�, rich-club phenomenon
�35�, etc.� since the derivation in Ref. �13� is based on un-
correlated networks. In addition, the predicted accuracy de-
creases as the increase of clique size m, because the cluster-
ing coefficient takes into account only the triangles �36�.
Therefore, a more accurate analysis may involve a higher-
order clustering coefficient �7�. In other words, Ref. �13�
provides a starting point of an in-depth understanding of the
network structure at the clique level, while the diversity and
complexity of real networks require further explorations on
this issue.

TABLE I. The basic topological properties of the present seven
networks, where N, M, L, and C represent the total number of
nodes, the total number of edges, the average distance, and the
clustering coefficient, respectively.

Networks/Measures N M L C

Internet at AS level 10515 21455 3.66151 0.446078

Internet at routers level 228263 320149 9.51448 0.060435

Metabolic network 1006 2957 3.21926 0.216414

World-Wide-Web 325729 1090108 7.17307 0.466293

Collaboration network 6855 11295 4.87556 0.389773

ppi-yeast networks 4873 17186 4.14233 0.122989

Friendship networks 10692 48682 4.48138 0.178442

FIG. 8. �Color online� Clique-degree distributions of the BBS
friendship networks at the University of Science and Technology of
China. The blue points with error bars denote the case of a random-
ized network.

FIG. 9. �Color online� The clique-degree distributions in the
randomized network corresponding to the BBS friendship network
of USTC. The black squares and red circles represent the clique-
degree distributions of order 3 and 4, respectively. All the data
points and error bars are obtained from 100 independent
realizations.
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TABLE II. The empirical ��m� and predicted ��m� � power-law exponent of the clique-degree distribution,
where � and � denote the power-law exponents of the degree distribution and clustering-degree correlation.
The symbol “/” denotes the cases with ��m−2��2, leading to negative and meaningless �m� .

Networks � � m �m �m� Type

Internet at AS level 2.21 1.04 3 1.82 2.26 II
4 1.48 / II
5 1.28 / II

Internet at routers level 2.60 0.16 3 1.72 1.86 I
4 1.49 1.63 I
5 1.33 1.53 I

Metabolic network 2.04 0.80 3 1.85 1.87 I
4 1.56 2.73 II
5 1.43 / II

World-Wide-Web 2.33 1.15 3 1.59 2.56 II
4 1.37 / II
5 1.22 / II

Collaboration network 2.21 0.90 3 1.90 2.10 II
4 1.53 5.03 II
5 1.41 / II

ppi-yeast networks 2.18 0.91 3 1.68 2.08 II
4 1.47 5.37 II
5 1.36 / II

Friendship networks 1.85 0.32 3 1.48 1.51 I
4 1.25 1.42 I
5 1.20 1.41 I
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