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1 Written Assignment

Exercise 1.1

(5)
∑n

i=1 a
i

Solution: According to the summation formula of geometric progression, the answer is an+1−a
a−1 .

(8)
∑n

i=0 i
2

Solution:

i3 − (i− 1)3 = 3i2 − 3i + 1

⇒ n3 =
∑n

i=1(i3 − (i− 1)3) =
∑n

i=1(3i2 − 3i + 1)

= 3
∑n

i=1 i
2 − 3n(n+1)

2 + n

⇒
∑n

i=0 i
2 =

∑n
i=1 i

2 = n(n+1)(2n+1)
6

(13) Is 22n = O(2n)?
Solution: No. 22n = O(4n)

Exercise 1.2

(1) Is the GCD function distributive? Associative? Commutative?
Solution: Commutativity: Yes. The definition does not specify the order of a and b.
Associativity: Yes. Suppose GCD((a, b), c) = m and GCD(a, (b, c)) = n.

GCD((a, b), c) = m ⇒ m|GCD(a, b),m|c
⇒ m|a,m|b,m|c ⇒ m|a,m|GCD(b, c)

⇒ m|n (n is the largest k satisfying k|a and k|GCD(b, c))

We can prove n|m in the same way. Thus, m = n.
Distributivity: No. GCD(3, 2) = 1, GCD(3, 4) = 1, but GCD(3, (2 + 4)) = 3.

(3) If GCD(a, b) = p and GCD(c, d) = q, is GCD(ac, bd) = pq true for all the a, b, c, d? Either
prove it or give a counterexample.
Solution: Counterexample: a = 5, b = 4, c =4, d = 5.

Exercise 1.3

(5) Solve xn = xn−1 − 1
4xn−2, with x0 = 1, x1 = 1/2.

Solution: First solve the quadratic formula t2 − t + 1
4 = 0.
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The solutions are t1 = t2 = 1
2 . Thus the solution is of the form xn = a( 1

2 )n.
To satisfy the initial conditions, we can obtain a = 1. Thus, xn = ( 1

2 )n.

(8) Solve T (1) = 1, and for all n ≥ 2, T (n) = 3T (n− 1) + 2.
Solution:

T (n) = 3T (n− 1) + 2

⇒ T (n) + 1 = 3T (n− 1) + 3 = 3(T (n− 1) + 1)

Let S(n) = T (n) + 1. Then

S(n) = 3S(n− 1), S(1) = 2

⇒ S(n) = 2× 3n−1

⇒ T (n) = 2× 3n−1 − 1

Exercise 1.4

(3) Prove
∑n

i=1(2i− 1) = n2.
Solution:

i2 − (i− 1)2 = (i− i + 1)(i + i− 1) = 2i− 1

⇒
n∑

i=1

(2i− 1) =

n∑
i=1

(i2 − (i− 1)2) = n2 − 02 = n2

(5) Prove 2lg(n!) > nlgn by using Induction, where n is a positive integer greater than 2.
Solution: Let P (n) be lg(n!) > nlgn, where n is a positive integer.
For n = 1, L.H.S = 2lg(1!) > lg(1) = R.H.S. P(1) is true.
Assume P(k) is true, i.e. 2lg(k!) > klgk, where k is a positive integer
For n = k + 1,

L.H.S = 2lg((k + 1)!)
= 2(lg(k!) + lg(k + 1))
> klgk + 2lg(k + 1) (by assumption)
> (k − 1)lg(k + 1) + 2lg(k + 1) (k + 1 > e > (1 + 1

k )k ⇒ kk > (k + 1)k−1 for k ≥ 2)
= (k + 1)lg(k + 1)
= R.H.S

P (k + 1) is also true.
Therefore, by M.I., P (n) is true for all positive integer n.

Exercise 1.6

(2) for i = 1 to n;

for j = i to n;

x := x + 1;

Solution: f(n) = n + (n− 1) + ... + 1 = n(n+1)
2 , g(n) = n2.

(4) for i = 1 to n;

for j = i to n;

for k = 1 to i*n;

x := x + 1;
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Solution: f(n) =
∑n

i=1(n− i + 1)in = n2
∑n

i=1 i + n
∑n

i=1(i− i2) = n2(n+1)(n+2)
6 , g(n) = n4.

(6) for i = 1 to n-1;

for j = i+1 to n;

for k = 1 to j;

x := x + 1;

Solution: f(n) =
∑n−1

i=1

∑n
j=i+1 j =

∑n−1
i=1

(n+i+1)(n−i)
2 = 1

2

∑n−1
i=1 (n2 − i2 + n− i)

= 1
2 (n(n + 1)(n− 1)− (n−1)n(2n−1)

6 − n(n−1)
2 ) = (n−1)n(n+1)

3 , g(n) = n3.

Exercise 1.9

(3) If we define the total cost, C(n), of the algorithm as:

C(n) = t(n) + 5× s(n).

Now calculate the average cost for each of the two algorithms. Which one is the better algorithm?
By how much?
Solution: You can use the following program to calculate the answer.

#include<stdio.h>

#define MAXN 100

int main()

{

int i;

double A=0, B=0;

for (i=1; i<=MAXN; i++)

{

if (i<10) A+=i*i;

else if (i<50) A+=i;

else A+=i*i*i;

if (i<20) A+=5*i;

else A+=5*1.5*i;

if (i<30) B+=i;

else if (i<70) B+=i*i;

else B+=i*i*i;

if (i<50) B+=5*5*i;

else B+=5*0.5*i;

}

A = A/MAXN;

B = B/MAXN;

printf("The average cost of A is %f more than that of B.\n", A-B);

return 0;

}

B is better than A for 42265.025.

(4) Come up with a strategy that you would use to minimize the time and space complexi-
ty individually?
Solution: t(n) = min{tA(n), tB(n)}, s(n) = min{sA(n), sB(n)}. Thus,
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t(n) =

 n if 1 ≤ n < 50
n2 if 50 ≤ n < 70
n3 if 70 ≤ n ≤ 100

s(n) =

 n if 1 ≤ n < 20
1.5n if 20 ≤ n < 50
0.5n if 50 ≤ n ≤ 100

2 Programming Assignment

Exercise 1.15

Analysis: The most intuitive implementation is to convert both the decimal numbers into binary
ones. Then compare them bit by bit. A easier way without converting is to directly divide 2
until both of them are 0. In each step, if the results of mod 2 are different, add the answer by 1.
One place you should pay attention to is that if you stop the while loop when any one of them
is 0, you will be wrong on the case like 65535 and 0. The sample code is shown below.

#include <stdio.h>

int main()

{

int T, a, b, ans, i;

scanf("%d", &T);

for (i = 0; i<T; i++) {

scanf("%d%d", &a, &b);

ans = 0;

while (a || b) { /*stop when a and b are both 0*/

if (a%2!=b%2) ans++; /*start to compare from the low order position*/

a = a/2; /*then drop the position which has been compared*/

b = b/2;

}

printf("%d\n", ans);

}

return 0;

}

Exercise 1.19

Analysis: About input, if you manipulate char instead of string, please do not remember to
read the new line character at the end of the first line. This problem mainly aims to examine
your skill on dealing with strings. In C language, you can directly convert char to int by using
a converter (int) before the variable. Some tricky points you may pay attention to: i). 0 and 1
are not prime; ii). nmin can never be 0; iii). do not update nmin until you have read the whole
string. The sample code is shown below.

#include <stdio.h>

#include <math.h>

int isprime(int num)

{

if (num == 0 || num == 1) return 0; /*special cases*/
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int start = (int)sqrt(num);

int i, ans = 1;

for (i=2; i<=start; i++) {

if (!(num%i)) {

ans = 0;

break;

}

}

return ans;

}

int main()

{

int T, min, max, i, j;

char ch;

int times[26]; /*save the times one character appears in the string*/

scanf("%d", &T);

getchar(); /*read the new line character*/

for (i = 0; i<T; i++) {

min = 256;

max = 0;

for (j=0; j<26;j++) times[j] = 0;

while ((ch=getchar())!=’\n’) times[(int)(ch)-(int)(’a’)]++;

for (j=0; j<26;j++) {

if (times[j]) {

if (times[j]>max) max=times[j];

if (times[j]<min) min=times[j];

}

}

if (isprime(max-min)) printf("YES\n");

else printf("NO\n");

}

return 0;

}
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