igrifree.com The best alternatives for currency transfer online is the transferwise borderless account review with very competitive rates. kostenlose spiele smokAnkara sehir i�i k���k nakliyat hct nedirGoVisaFree.com helps individuals and families build a freedom lifestyle, with guidance on different tax schemes, residency and citizenship by investment options. The Portugal Golden Visa program and the NHR program have both been quite advantageous schemes created by the Portuguese government in the recent years. More and more investors apply for the www.fordcarparts-en.com jetztplay.de elektronik sigara Yerden Isitma SistemleriBloons Tower Defense 5
Seminars
Back
Topic: Multiple Improvements of Multiple Imputation Likelihood Ratio Tests
Date: 01/02/2018
Time: 11:00 a.m. - 12:00 p.m.
Venue: William M W Mong Engineering Building (ERB) - Room 712
Category: Seminar
Speaker: Mr. CHAN, Kin Wai
Details:

Abstract

Multiple imputation (MI) inference handles missing data by first properly imputing the missing values m times, and then combining the m analysis results from applying a complete-data procedure to each of the completed datasets. However, the existing method for combining likelihood ratio tests has multiple defects: (i) the combined test statistic can be negative in practice when the reference null distribution is a standard F distribution; (ii) it is not invariant to re-parametrization; (iii) it fails to ensure monotonic power due to its use of an inconsistent estimator of the fraction of missing information (FMI) under the alternative hypothesis; and (iv) it requires non-trivial access to the likelihood ratio test statistic as a function of estimated parameters instead of datasets. This paper shows, via both theoretical derivations and empirical investigations, that essentially all of these problems can be straightforwardly addressed if we are willing to perform an additional likelihood ratio test by stacking the m completed datasets as one big completed dataset.  A particularly intriguing finding is that the FMI itself can be estimated consistently by a likelihood ratio statistic for testing whether the m completed datasets produced by MI can be regarded effectively as samples coming from a common model. Practical guidelines are provided based on an extensive comparison of existing MI tests.

PDF: 20180201_CHAN.pdf