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Multi-dimensional function-valued processes

In FPCA, the random process X(t), t ∈ RQ , is represented as (Karhunen-Loéve expansion)

X(t) = µ(t) +
∞∑
j=1

ξjνj (t),

where ξj are uncorrelated random variables and νj are eigenfunctions of the covariance
operator of X , i.e. νj are solutions to the equation∫

k(t, t′)ν(t′)dt′ = λν(t).

The eigenvalue λj is the variance of X in the principal direction νj and the cumulative
fraction of variance explained by the first J directions is given by

CFVEJ =
∑J

j=1 λj∑M
j=1 λj

, where M is large.

When Q = 1, the method is well developed; but it is challenging when Q is large.
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Human Fertility Data
Age-Specific Fertility
Rate (ASFR) for
country j: Xj (s, t),
j = 1, . . . ,N,
s ∈ S, t ∈ T .
Observed data:

I women’s age:
s = 12, 13, . . . , 55

I calendar year: t =
1951, 1952, . . . , 2006
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Figure 1: Human fertility rates of 17 countries over age for two different years.
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Covariance function

We need to estimate

Cov
(

X(s, t),X(s ′, t ′)
)

= k(s, t; s ′, t ′),

Chen et al. (JRSSb 2017) suggest to use tensor product representations:

Marginal FPCA: X(s, t) = µ(s, t) +
∞∑
j=1

∞∑
k=1

χjkφjk (t)ψj (s)

Product FPCA: X(s, t) = µ(s, t) +
∞∑
j=1

∞∑
k=1

χjkφk (t)ψj (s)

For the Product FPCA, this means

k(s, t; s ′, t ′) = lim
J→∞

J∑
j=1

J∑
k=1

λkγjφk (t)ψj (s)φk (t ′)ψj (s ′)

= k1(s, s ′)k2(t, t ′).
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Separability assumption of covariance functions

The covariance function of the random process X(t), t ∈ <2, is said to be separable when

k(t1, t2; t ′1, t ′2) = k1(t1, t ′1)k2(t2, t ′2).

Main advantages:
it reduces computational costs;
it is easier to guarantee that the full covariance function is positive semi-definite.
Covariance function for each coordinate can be estimated nonparametrically

Disadvantage:
no interaction between t1 and t2 in the covariance structure is allowed.

Here we are not interested in interactions in the mean function:

E
(

X(t)
)

= γ0 + γ1(t1) + γ2(t2) + γ12(t1, t2)

Covariance separability implies separability of eigenfunctions.
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Process regression model

X(t) = µ(t) + f (t) + ε(t), f (t), t ∈ <Q .

To address the difficulties in the estimation of k(t, t′), we can model the random
process f by a process prior.

A Gaussian process regression (GPR) model (O’Hagan and Kingman, 1978;
Rasmussen and Williams, 2006; Shi and Choi, 2011) is defined as:

I the prior of f (t) is a GP with zero mean, and
I a covariance function

k(·, ·) : T 2 → R, k(t, t′) = Cov
[
f (t), f (t′)

]
.

I Marginally, for any finite n and t1, . . . , tn ∈ T , the joint distribution of
Xn =

(
X(t1), . . . ,X(tn)

)′, if ε(t) is normal, is an n-variate Gaussian distribution with
mean vector µn =

(
µ(t1), . . . , µ(tn)

)′ and covariance matrix Ψn whose (i , j)-th entry
is given by

[
Ψn
]

ij
= k(t i , t j ) + δijσ2

ε, i , j = 1, . . . , n.

If ε(t) or X(t) is non-Gaussian, the marginal distribution is much more complicated
(see e.g. Wang and Shi, 2014)
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Parametric isotropic covariance functions

Powered Exponential:

k(t, t′) = ν exp
{
− ω||t − t′||γ

}
, ν > 0, ω ≥ 0, 0 < γ ≤ 2.

Rational Quadratic:

k(t, t′) =
(

1 + sαω||t − t′||2
)−α

, α, ω ≥ 0.

Matérn:

k(t, t′) = 1
Γ(ν)2ν−1

(√
2νω||t − t′||

)ν
Kν
(√

2νω||t − t′||
)
, ω ≥ 0,

where Kν is the modified Bessel function of order ν.

These kernels only depend on the Euclidean distance d = ||t − t′||.
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More general norms

• to allow anisotropic covariance functions:

d2 = (t − t′)T diag(ω1, . . . , ωQ)(t − t′)

=
Q∑

q=1

ωq(tq − t ′q)2, ω1, . . . , ωQ ≥ 0.

• to allow non-separable covariance functions:

d2 = (t − t′)T Σ(t − t′), where Σ is positive semi-definite.
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Considering nonstationarity

When Q is small, k(·, ·) can be modelled nonparametrically (see e.g. Hall, Müller &
Yao, 2008).
When Q is large, nonparametric method suffers from the curse of dimensionality.

We may use a parametric approach via a convolution (Higdon et al, 99):

f (t) =
∫
<2

kt(u)ψ(u)du,

Using a Gaussian kernel leads to ( Paciorek and Schervish, 2006; Risser and Calder,
2017)

Cov
[
f (t), f (t′)

]
= σ2|Σ(t)|1/4|Σ(t′)|1/4

∣∣∣∣Σ(t) + Σ(t′)
2

∣∣∣∣−1/2

g
(√

Qtt′

)
,

where g is a valid correlation function where

Qtt′ = (t − t′)T
(

Σ(t) + Σ(t′)
2

)−1

(t − t′),
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Considering nonstationarity

A special case is (composite GP, Ba and Joseph, 2012) that Σ(t) = σ(t)Σ, so that

Cov
[
f (t), f (t′)

]
= σ(t)σ(t′)|Σ|1/4|Σ|1/4

∣∣∣∣Σ + Σ
2

∣∣∣∣−1/2

g
(√

Qtt′

)
.

A general case: how to model Σ(t) (Konzen, Shi and Wang, 2019)
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Spherical parametrisation of varying matrix Σ(τ )

τ is a subset of t
We propose to use spherical parametrisation (Pinheiro and Bates, 1996) of Σ(τ ),
converting the problem to modelling of unconstrained parameters ω(τ ).
We will consider the Cholesky decomposition

Σ(τ ) = L(τ )T L(τ ),

where L = L(θ) is an Q × Q upper triangular matrix (including the main diagonal).
Let Li denote the ith column of L and `i denote the spherical coordinates of the first
i elements of Li .
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Spherical parametrisation of varying matrix Σ(τ )

In general, we have

[Li ]1 = [`i ]1 cos([`i ]2),
[Li ]2 = [`i ]1 sin([`i ]2) cos([`i ]3),

. . . ,

[Li ]i−1 = [`i ]1 sin([`i ]2) · · · cos([`i ]i ),
[Li ]i = [`i ]1 sin([`i ]2) · · · sin([`i ]i ).

The spherical parameterisation is unique if

[`i ]1 > 0, i = 1, . . . ,Q,
[`i ]j ∈ (0, π), i = 2, . . . ,Q, j = 2, . . . , i .

Interpretation: we can show that Σii = [`i ]2
1 and that ρ1i = cos([`i ]2), i = 2, . . . ,Q,

with −1 < ρ1i < 1. This means that we can interpret the values of L in terms of the
length-scale parameters and directions of dependence of Σ.
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Nonstationary covaraince with varying matrix – Local empirical Bayesian
estimation

We can proceed with an unconstrained estimation by

ωi = log([`i ]1), i = 1, . . . ,Q,

ωQ+(i−2)(i−1)/2+j−1 = log
(

[`i ]j

π − [`i ]j

)
, i = 2, . . . ,Q, j = 2, . . . , i .

Model each ωk (τ ) nonparametrically: e.g. by GPR or a set of basis functions

Then, we estimate the unconstrained hyperparameters (log σ2
ε,ω(τ )) via local

marginal likelihood (or local empirical Bayesian), i.e. based on the marginal
distribution of Xn =

(
X(t1), . . . ,X(tn)

)′.
Flexible varying structure: e.g. time-varying or spatial-varying or both.
Challenges: for non-Gaussian data
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Prediction and decomposition of function-valued processes

For Gaussian data, the posterior distribution p(f |D, σ2
ε) is a multivariate Gaussian

distribution with

f̂ = E(f |D, σ2
ε) = K(K + σ2

εI)−1x
Var(f |D, σ2

ε) = σ2
εK(K + σ2

εI)−1.

Decomposition (fPCA)

X(t) ≈ µ(t) + f̂

= µ(t) +
∞∑
j=1

ξjφj (t)

≈ µ(t) +
J∑

j=1

ξjφj (t)
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GPR model – asymptotic theory

Suppose that k(·, ·) continuous and has a finite trace, then f (t) has a representation

f (t) =
∞∑
j=1

ξjφj (t) =
J∑

j=1

ξjφj (t) + b1/2z(t)

where λ1 ≥ λ2 . . ., and φj is the eigen-function of k(·, ·) and ξj ∼ N(0, λj ).
We therefore have RKHS

HK = H0 ⊕H1,

where H0 is the span of φ1, · · · , φS (null space) and H1 is the RKHS for K1.
Let P1 be the orthogonal projection operator in HK onto H1, and
fn,λ be the nimimiser in HK of the regularised risk functional:

1
n

n∑
i=1

(xi − f (t i ))2 + λ||P1f ||K ,
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GPR model – asymptotic theory

Theorem
Let f̂GP(t) = E(f (t)|x1, . . . , xn), then

lim
D→∞

f̂GP(t) = fn,λ(t),

where λ = σ2

nb and D = diag(λ1/b, . . . , λS/b). limD→∞ means that each element tends
to infinity.
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GPR model: posterior consistency

Theorem
(Choi, 2005) Let P0 denote the joint conditional distribution of {xn}∞n=1 given the
covariate assuming that f0 is the true response function. Suppose that the values of the
covariate in [0, 1] are fixed, i.e., known ahead of time. Then for every ε > 0,

Π
{

f ∈W C
ε,n|D

}
→ 0 a.s. [P0].

The neighbourhood is defined as

Wε,n =
{

(f , σ) :
∫
|f (t)− f0(t)|dQn(x) < ε,

∣∣∣ σ
σ0
− 1
∣∣∣ < ε

}
.

Remarks: a good choice of hyper-parameters can improve the efficiency, but has no
influence to the consistency
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GPR model: information consistency

K-L distance: D[p, q] =
∫

(log p − log q)dP.

Theorem
Upper bound of D[P0(x1, . . . , xn|f0),PGP(x1, . . . , xn)],

D[P0(x1, . . . , xn|f0),PGP(x1, . . . , xn)] ≤ 1
2‖f0‖2

K + 1
2 log |In + cK |,

I ‖f ‖K is the RKHS norm of f , and c is a certain constant.
I PGP (x1, . . . , xn) – a Bayesian predictive distribution of x1, . . . , xn using GP prior based on n

observations.

Thus, the expected KL divergence divided by the sample size converges to zero as
the sample size increases (Seeger, et al. 2008).
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Decomposition of function-valued processes – Asymptotic theory
Theorem
For N ≥ 1 for which λN > 0, functions {φi , i = 1, ...,N} provide the best finite
dimensional approximations to Z c (u) with respect to minimizing criterion

argming1,...,gN∈L2(U)E

{∫
U
||Z c (u)−

N∑
i=1

gi (u)ξ∗i ||2du

}
,

where g1, ..., gN ∈ L2(U) are orthogonal, and ξ∗i =< Z c (·), gi (·) >=
∫

Z c (u)gi (u)du.
The minimizing value is

∑∞
i=N+1 λi .

Theorem
Suppose conditions C1 - C3 in Appendix hold, and µ̂(t) satisfies
supt |µ̂(t)− µ(t)| = Op[{log(n)/n}1/2], we have, for 1 ≤ i ≤ N,

||kθ̂(·, ·)− kθ(·, ·)|| = Op({log(n)/n}1/2),

||λ̂i − λi || = Op({log(n)/n}1/2),

||φ̂i (·)− φi (·)|| = Op({log(n)/n}1/2),

||ξ̂i − ξi || = Op({log(n)/n}1/2).
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An example using a general covariance structure

In this simulation study, we assume that the random process f (t1, t2) has zero mean and
covariance function given by

Cov
[
f (t1, t2), f (t ′1, t ′2)

]
=

20∑
j=1

αjφj (t1 + t2)φj (t ′1 + t ′2),

where φj (·) are Chebyshev polynomials, αj = j−3/2 and t ∈ [−1, 1]2.

We have generated 100 curves from X(t) = f (t) + ε, σ2
ε = 0.12, observed at n1 × n2 =

20× 20 = 400 equally spaced points.
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Figure 2: First four leading eigensurfaces φ(t1, t2) of the true model (left column) and the
corresponding estimated eigensurfaces φ̂(t1, t2) from the nonstationary GP model (centre) and
Product FPCA model (right).
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Figure 3: Comparison of cumulative FVEs obtained by the true, and Product FPCA, and
nonstationary GP (NSGP) models.
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Application 1: Non-stationary Gaussian Processes applied to ASFR data
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Figure 5: First three eigensurfaces φ̂j (s, t), j = 1, 2, 3, of the Empirical, Composite GP, and
Product FPCA covariance functions estimated for ASFR of 17 countries.

Shi (NCL & ATI, UK) Modelling function-valued processes 17/12/19 28 / 30



Conclusions

By avoiding the covariance separability assumption, we can provide additional
insights into multi-dimensional functional data;
Extensions to cases where Q > 2 are straightforward;
We just need one realisation of the random process X to estimate its covariance
structure;
Convolved GPs can be used to measure the cross-covariance structure between
functions.

Interesting topics for future research
I Extension to multi-variate function-valued processes, i.e. X(t) ∈ Rm, t ∈ RQ
I The use of other process priors: e.g. heavy-tailed processes (Shah et al., 2014; Wang

et al., 2017; Cao et al., 2018): need efficient algorithm
I Extension to Non-Gaussian data is challenging.

Thanks for listening!
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