Modelling Function-Valued Processes with Nonseparable and/or Nonstationary Covariance Structure

Jian Qing Shi

School of Mathematics, Statistics & Physics Newcastle University, and Turing Fellow, Alan Turing Institute, UK

Joint work with Evandro Konzen (Reading, UK) and Zhanfeng Wang (USTC)

International Statistical Conference in Memory of Professor Sik-Yum Lee, 17-18/12/2019, CUHK, HK

 Ω

メロメ メ部 メメ きょうくきょう

International Statistical Conference in Memory of Prof. S Y Lee

'When you identify the problems, you finish half of the project.'

 299

Overview

¹ [Multi-dimensional function-valued processes](#page-3-0)

• [Covariance separability assumption](#page-8-0)

2 [Bayesian process regression analysis](#page-11-0)

- **[Stationary model](#page-11-0)**
- **[Nonstationary GPs](#page-18-0)**

³ [Numerical results](#page-36-0)

⁴ [Conclusions](#page-41-0)

 $2Q$

Multi-dimensional function-valued processes

In FPCA, the random process $X(\boldsymbol{t}), \boldsymbol{t} \in \mathbb{R}^{Q},$ is represented as (Karhunen-Loéve expansion)

$$
X(\boldsymbol{t}) = \mu(\boldsymbol{t}) + \sum_{j=1}^{\infty} \xi_j \nu_j(\boldsymbol{t}),
$$

where ξ _i are uncorrelated random variables and ν _i are eigenfunctions of the covariance operator of X , i.e. ν_i are solutions to the equation

$$
\int k(\mathbf{t},\mathbf{t}')\nu(\mathbf{t}')d\mathbf{t}'=\lambda\nu(\mathbf{t}).
$$

The eigenvalue λ_i is the variance of X in the principal direction ν_i and the cumulative fraction of variance explained by the first J directions is given by

$$
\mathsf{CFVE}_J = \frac{\sum_{j=1}^J \lambda_j}{\sum_{j=1}^M \lambda_j}, \quad \text{where } M \text{ is large.}
$$

 Ω

メロメ メ都 メメ きょうぼうし

Multi-dimensional function-valued processes

In FPCA, the random process $X(\boldsymbol{t}), \boldsymbol{t} \in \mathbb{R}^{Q},$ is represented as (Karhunen-Loéve expansion)

$$
X(\boldsymbol{t}) = \mu(\boldsymbol{t}) + \sum_{j=1}^{\infty} \xi_j \nu_j(\boldsymbol{t}),
$$

where ξ _i are uncorrelated random variables and ν _i are eigenfunctions of the covariance operator of X , i.e. ν_i are solutions to the equation

$$
\int k(\mathbf{t},\mathbf{t}')\nu(\mathbf{t}')d\mathbf{t}'=\lambda\nu(\mathbf{t}).
$$

The eigenvalue λ_i is the variance of X in the principal direction ν_i and the cumulative fraction of variance explained by the first J directions is given by

$$
\mathsf{CFVE}_J = \frac{\sum_{j=1}^J \lambda_j}{\sum_{j=1}^M \lambda_j}, \quad \text{where } M \text{ is large.}
$$

When $Q = 1$, the method is well developed; but it is challenging when Q is large.

 Ω

イロト 不優 ト 不思 ト 不思 トー 理

CAN

Human Fertility Data

Age-Specific Fertility Rate (ASFR) for country $j: X_i(s, t)$, $j = 1, \ldots, N$, $s \in \mathcal{S}$, $t \in \mathcal{T}$.

Observed data:

- \blacktriangleright women's age: $s = 12, 13, \ldots, 55$
- ightharpoonup calendar year: $t =$ 1951*,* 1952*, . . . ,* 2006

year

USA

த

 $2Q$

Shi (NCL & ATI, UK) [Modelling function-valued processes](#page-0-0) 17/12/19 5/30

age

Figure 1: Human fertility rates of 17 countries over age for two different years.

メロト メ御 トメ きょ メきょ

 290

Covariance function

We need to estimate

$$
\mathsf{Cov}\big(X(s,t),X(s',t')\big)=k(s,t;s',t'),
$$

Chen et al. (JRSSb 2017) suggest to use tensor product representations:

Marginal FPCA:
$$
X(s, t) = \mu(s, t) + \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \chi_{jk} \phi_{jk}(t) \psi_j(s)
$$

Product FPCA:
$$
X(s, t) = \mu(s, t) + \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \chi_{jk} \phi_k(t) \psi_j(s)
$$

For the Product FPCA, this means

$$
k(s,t;s',t') = \lim_{J \to \infty} \sum_{j=1}^{J} \sum_{k=1}^{J} \lambda_k \gamma_j \phi_k(t) \psi_j(s) \phi_k(t') \psi_j(s')
$$

= $k_1(s,s')k_2(t,t').$

 299

Separability assumption of covariance functions

The covariance function of the random process $\mathbf{X}(\boldsymbol{t}),\;\boldsymbol{t}\in\Re^2,$ is said to be *separable* when

$$
k(t_1, t_2; t'_1, t'_2) = k_1(t_1, t'_1)k_2(t_2, t'_2).
$$

Main advantages:

- it reduces computational costs;
- it is easier to guarantee that the full covariance function is positive semi-definite.
- Covariance function for each coordinate can be estimated nonparametrically

 Ω

Separability assumption of covariance functions

The covariance function of the random process $\mathbf{X}(\boldsymbol{t}),\;\boldsymbol{t}\in\Re^2,$ is said to be *separable* when

$$
k(t_1, t_2; t'_1, t'_2) = k_1(t_1, t'_1) k_2(t_2, t'_2).
$$

Main advantages:

- it reduces computational costs;
- it is easier to guarantee that the full covariance function is positive semi-definite.
- Covariance function for each coordinate can be estimated nonparametrically Disadvantage:
	- no interaction between t_1 and t_2 in the covariance structure is allowed.

Here we are not interested in interactions in the mean function:

$$
E(X(t))=\gamma_0+\gamma_1(t_1)+\gamma_2(t_2)+\gamma_{12}(t_1,t_2)
$$

Separability assumption of covariance functions

The covariance function of the random process $\mathbf{X}(\boldsymbol{t}),\;\boldsymbol{t}\in\Re^2,$ is said to be *separable* when

$$
k(t_1, t_2; t'_1, t'_2) = k_1(t_1, t'_1) k_2(t_2, t'_2).
$$

Main advantages:

- it reduces computational costs;
- it is easier to guarantee that the full covariance function is positive semi-definite.
- Covariance function for each coordinate can be estimated nonparametrically Disadvantage:
	- no interaction between t_1 and t_2 in the covariance structure is allowed.

Here we are not interested in interactions in the mean function:

$$
E(X(t)) = \gamma_0 + \gamma_1(t_1) + \gamma_2(t_2) + \gamma_{12}(t_1, t_2)
$$

Covariance separability implies separability of eigenfunctions.

$$
X(\mathbf{t})=\mu(\mathbf{t})+f(\mathbf{t})+\epsilon(\mathbf{t}),\ \ f(\mathbf{t}),\ \mathbf{t}\in\Re^Q.
$$

To address the difficulties in the estimation of $k(t, t')$, we can model the random process f by a process prior.

 $2Q$

$$
X(\mathbf{t})=\mu(\mathbf{t})+f(\mathbf{t})+\epsilon(\mathbf{t}),\ \ f(\mathbf{t}),\ \mathbf{t}\in\Re^Q.
$$

- To address the difficulties in the estimation of $k(t, t')$, we can model the random process f by a process prior.
- A Gaussian process regression (GPR) model (O'Hagan and Kingman, 1978; Rasmussen and Williams, 2006; Shi and Choi, 2011) is defined as:
	- ightharpoorth
	- \blacktriangleright a covariance function

$$
k(\cdot,\cdot): \mathcal{T}^2 \to \mathbb{R}, \ k(\mathbf{t},\mathbf{t}') = \mathsf{Cov}\big[f(\mathbf{t}),f(\mathbf{t}')\big].
$$

 Ω

メロメ メ都 メメ きょくきょう

$$
X(\mathbf{t})=\mu(\mathbf{t})+f(\mathbf{t})+\epsilon(\mathbf{t}),\ \ f(\mathbf{t}),\ \mathbf{t}\in\Re^Q.
$$

- To address the difficulties in the estimation of $k(t, t')$, we can model the random process f by a process prior.
- A Gaussian process regression (GPR) model (O'Hagan and Kingman, 1978; Rasmussen and Williams, 2006; Shi and Choi, 2011) is defined as:
	- \blacktriangleright the prior of $f(t)$ is a GP with zero mean, and
	- \blacktriangleright a covariance function

$$
k(\cdot,\cdot): \mathcal{T}^2 \to \mathbb{R}, \ k(\mathbf{t},\mathbf{t}') = \text{Cov}\Big[f(\mathbf{t}),f(\mathbf{t}')\Big].
$$

 \triangleright Marginally, for any finite *n* and $t_1, \ldots, t_n \in \mathcal{T}$, the joint distribution of $X_n = \big(X(\bm t_1), \dots, X(\bm t_n)\big)^\prime$, if $\epsilon(\bm t)$ is normal, is an *n*-variate Gaussian distribution with mean vector $\mu_n = \big(\mu(\bm t_1), \dots, \mu(\bm t_n)\big)'$ and covariance matrix Ψ_n whose (i,j) -th entry is given by $\left[\Psi_n\right]_{ij} = k(\boldsymbol{t}_i, \boldsymbol{t}_j) + \delta_{ij} \sigma^2_{\varepsilon}, \ \ i,j=1,\ldots,n.$

イロト イ部 トイ ミト イモト

$$
X(\mathbf{t})=\mu(\mathbf{t})+f(\mathbf{t})+\epsilon(\mathbf{t}),\ \ f(\mathbf{t}),\ \mathbf{t}\in\Re^Q.
$$

- To address the difficulties in the estimation of $k(t, t')$, we can model the random process f by a process prior.
- A Gaussian process regression (GPR) model (O'Hagan and Kingman, 1978; Rasmussen and Williams, 2006; Shi and Choi, 2011) is defined as:
	- \blacktriangleright the prior of $f(t)$ is a GP with zero mean, and
	- \blacktriangleright a covariance function

$$
k(\cdot,\cdot): \mathcal{T}^2 \to \mathbb{R}, \ k(\mathbf{t},\mathbf{t}') = \text{Cov}\Big[f(\mathbf{t}),f(\mathbf{t}')\Big].
$$

- \triangleright Marginally, for any finite *n* and $t_1, \ldots, t_n \in \mathcal{T}$, the joint distribution of $X_n = \big(X(\bm t_1), \dots, X(\bm t_n)\big)^\prime$, if $\epsilon(\bm t)$ is normal, is an *n*-variate Gaussian distribution with mean vector $\mu_n = \big(\mu(\bm t_1), \dots, \mu(\bm t_n)\big)'$ and covariance matrix Ψ_n whose (i,j) -th entry is given by $\left[\Psi_n\right]_{ij} = k(\boldsymbol{t}_i, \boldsymbol{t}_j) + \delta_{ij} \sigma^2_{\varepsilon}, \ \ i,j=1,\ldots,n.$
- \bullet If $\epsilon(t)$ or $X(t)$ is non-Gaussian, the marginal distribution is much more complicated (see e.g. Wang and Shi, 2014)

 209

イロメ イ部メ イ君メ イ君メー

Parametric isotropic covariance functions

Powered Exponential:

$$
k(\mathbf{t},\mathbf{t}') = \nu \exp\Big\{-\omega||\mathbf{t}-\mathbf{t}'||^{\gamma}\Big\}, \quad \nu > 0, \quad \omega \geq 0, \quad 0 < \gamma \leq 2.
$$

Rational Quadratic:

$$
k(\boldsymbol{t},\boldsymbol{t}')=\left(1+s_{\alpha}\omega||\boldsymbol{t}-\boldsymbol{t}'||^2\right)^{-\alpha},\quad\alpha,\omega\geq 0.
$$

Matérn:

$$
k(\mathbf{t},\mathbf{t}') = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(\sqrt{2\nu}\omega||\mathbf{t}-\mathbf{t}'|| \right)^{\nu} \mathcal{K}_{\nu} \left(\sqrt{2\nu}\omega||\mathbf{t}-\mathbf{t}'|| \right), \quad \omega \geq 0,
$$

where K*^ν* is the modified Bessel function of order *ν*.

 299

E

Parametric isotropic covariance functions

Powered Exponential:

$$
k(\mathbf{t},\mathbf{t}') = \nu \exp\Big\{-\omega||\mathbf{t}-\mathbf{t}'||^{\gamma}\Big\}, \quad \nu > 0, \quad \omega \geq 0, \quad 0 < \gamma \leq 2.
$$

Rational Quadratic:

$$
k(\boldsymbol{t},\boldsymbol{t}')=\left(1+s_{\alpha}\omega||\boldsymbol{t}-\boldsymbol{t}'||^2\right)^{-\alpha},\quad\alpha,\omega\geq 0.
$$

Matérn:

$$
k(\mathbf{t},\mathbf{t}')=\frac{1}{\Gamma(\nu)2^{\nu-1}}\bigg(\sqrt{2\nu}\omega||\mathbf{t}-\mathbf{t}'||\bigg)^{\nu}\mathcal{K}_{\nu}\bigg(\sqrt{2\nu}\omega||\mathbf{t}-\mathbf{t}'||\bigg), \quad \omega\geq 0,
$$

where K*^ν* is the modified Bessel function of order *ν*.

These kernels only depend on the Euclidean distance $d = ||\boldsymbol{t} - \boldsymbol{t}'||$.

 $2Q$

More general norms

• to allow anisotropic covariance functions:

$$
d^{2} = (\boldsymbol{t} - \boldsymbol{t}')^{T} \text{diag}(\omega_{1}, \ldots, \omega_{Q})(\boldsymbol{t} - \boldsymbol{t}')
$$

=
$$
\sum_{q=1}^{Q} \omega_{q} (t_{q} - t'_{q})^{2}, \qquad \omega_{1}, \ldots, \omega_{Q} \geq 0.
$$

• to allow non-separable covariance functions:

 $d^2 = (\boldsymbol{t} - \boldsymbol{t}')^T \Sigma (\boldsymbol{t} - \boldsymbol{t}'),$ where Σ is positive semi-definite.

 299

イロト イ部 トイ君 トイ君 トー

- • When Q is small, $k(\cdot, \cdot)$ can be modelled nonparametrically (see e.g. Hall, Müller & Yao, 2008).
- When Q is large, nonparametric method suffers from the curse of dimensionality.

 299

メロト メ御 トメ ヨ トメ ヨト

- \bullet When Q is small, $k(\cdot,\cdot)$ can be modelled nonparametrically (see e.g. Hall, Müller $\&$ Yao, 2008).
- \bullet When Q is large, nonparametric method suffers from the curse of dimensionality.
- We may use a parametric approach via a convolution (Higdon et al, 99):

$$
f(\mathbf{t})=\int_{\Re^2}k_{\mathbf{t}}(\mathbf{u})\psi(\mathbf{u})d\mathbf{u},
$$

Using a Gaussian kernel leads to (Paciorek and Schervish, 2006; Risser and Calder, 2017)

$$
Cov[f(\boldsymbol{t}),f(\boldsymbol{t}')]=\sigma^2|\Sigma(\boldsymbol{t})|^{1/4}|\Sigma(\boldsymbol{t}')|^{1/4}\bigg|\frac{\Sigma(\boldsymbol{t})+\Sigma(\boldsymbol{t}')}{2}\bigg|^{-1/2}g\bigg(\sqrt{Q_{\boldsymbol{t}\boldsymbol{t}'}}\bigg),
$$

where g is a valid correlation function where

$$
Q_{tt'}=(t-t')^T\bigg(\frac{\Sigma(t)+\Sigma(t')}{2}\bigg)^{-1}(t-t'),
$$

 Ω

• A special case is (composite GP, Ba and Joseph, 2012) that $\Sigma(t) = \sigma(t)\Sigma$, so that

$$
Cov[f(\mathbf{t}), f(\mathbf{t}')] = \sigma(\mathbf{t})\sigma(\mathbf{t}')|\Sigma|^{1/4}|\Sigma|^{1/4}\left|\frac{\Sigma + \Sigma}{2}\right|^{-1/2}g\left(\sqrt{Q_{\mathbf{t}\mathbf{t}'}}\right).
$$

メロメ メ御 メメ ミメ メ ヨメ

• A special case is (composite GP, Ba and Joseph, 2012) that $\Sigma(t) = \sigma(t)\Sigma$, so that

$$
Cov[f(\mathbf{t}), f(\mathbf{t}')] = \sigma(\mathbf{t})\sigma(\mathbf{t}')|\Sigma|^{1/4}|\Sigma|^{1/4}\left|\frac{\Sigma + \Sigma}{2}\right|^{-1/2}g\left(\sqrt{Q_{\mathbf{t}t'}}\right).
$$

• A general case: how to model $\Sigma(t)$ (Konzen, Shi and Wang, 2019)

 Ω

Spherical parametrisation of varying matrix Σ(*τ*)

τ is a subset of **t**

- We propose to use spherical parametrisation (Pinheiro and Bates, 1996) of Σ(*τ*), converting the problem to modelling of unconstrained parameters $\omega(\tau)$.
- We will consider the Cholesky decomposition

$$
\Sigma(\tau)=L(\tau)^TL(\tau),
$$

where $L = L(\theta)$ is an $Q \times Q$ upper triangular matrix (including the main diagonal).

• Let L_i denote the *i*th column of L and ℓ_i denote the spherical coordinates of the first i elements of L_i .

 Ω

Spherical parametrisation of varying matrix Σ(*τ*)

Spherical parametrisation of varying matrix Σ(*τ*)

• In general, we have

$$
[L_i]_1 = [\ell_i]_1 \cos([\ell_i]_2),
$$

\n
$$
[L_i]_2 = [\ell_i]_1 \sin([\ell_i]_2) \cos([\ell_i]_3),
$$

\n...
\n
$$
[L_i]_{i-1} = [\ell_i]_1 \sin([\ell_i]_2) \cdots \cos([\ell_i]_i),
$$

\n
$$
[L_i]_i = [\ell_i]_1 \sin([\ell_i]_2) \cdots \sin([\ell_i]_i).
$$

The spherical parameterisation is unique if

$$
\begin{aligned} [\ell_i]_1 > 0, \quad i = 1, \dots, Q, \\ [\ell_i]_j &\in (0, \pi), \quad i = 2, \dots, Q, \quad j = 2, \dots, i. \end{aligned}
$$

Interpretation: we can show that $\Sigma_{ii} = [\ell_i]_1^2$ and that $\rho_{1i} = \cos([\ell_i]_2), i = 2, \ldots, Q$, with $-1 < \rho_{1i} < 1$. This means that we can interpret the values of L in terms of the length-scale parameters and directions of dependence of Σ .

 290

イロト イ部 トイ君 トイ君 トー

Nonstationary covaraince with varying matrix – Local empirical Bayesian estimation

We can proceed with an unconstrained estimation by

$$
\omega_i = \log([\ell_i]_1), \quad i = 1, \dots, Q, \omega_{Q + (i-2)(i-1)/2 + j - 1} = \log \left(\frac{[\ell_i]_j}{\pi - [\ell_i]_j} \right), \quad i = 2, \dots, Q, \quad j = 2, \dots, i.
$$

■ Model each $ω_k(τ)$ nonparametrically: e.g. by GPR or a set of basis functions

 QQ

メロト メ御 トメ ヨ トメ ヨト

Nonstationary covaraince with varying matrix – Local empirical Bayesian estimation

We can proceed with an unconstrained estimation by

$$
\omega_i = \log([\ell_i]_1), \quad i = 1, ..., Q,
$$

$$
\omega_{Q+(i-2)(i-1)/2+j-1} = \log\left(\frac{[\ell_i]_j}{\pi - [\ell_i]_j}\right), \quad i = 2, ..., Q, \quad j = 2, ..., i.
$$

- **■** Model each $ω_k(τ)$ nonparametrically: e.g. by GPR or a set of basis functions
- Then, we estimate the unconstrained hyperparameters (log $\sigma_{\varepsilon}^2, \omega(\tau))$ via local ò. marginal likelihood (or local empirical Bayesian), i.e. based on the marginal distribution of $X_n = (X(\mathbf{t}_1), \ldots, X(\mathbf{t}_n))'$.
- Flexible varying structure: e.g. time-varying or spatial-varying or both.
- **Challenges:** for non-Gaussian data

 Ω

Prediction and decomposition of function-valued processes

For Gaussian data, the posterior distribution $\bm{\mathsf{p}}(\bm{f}|\mathcal{D}, \sigma^2_{\varepsilon})$ is a multivariate Gaussian distribution with

$$
\hat{\mathbf{f}} = E(\mathbf{f}|\mathcal{D}, \sigma_{\varepsilon}^2) = K(K + \sigma_{\varepsilon}^2 I)^{-1} \mathbf{x}
$$

Var $(\mathbf{f}|\mathcal{D}, \sigma_{\varepsilon}^2) = \sigma_{\varepsilon}^2 K (K + \sigma_{\varepsilon}^2 I)^{-1}.$

 299

メロト メ御 トメ ヨ トメ ヨト

Prediction and decomposition of function-valued processes

For Gaussian data, the posterior distribution $\bm{\mathsf{p}}(\bm{f}|\mathcal{D}, \sigma^2_{\varepsilon})$ is a multivariate Gaussian distribution with

$$
\hat{\mathbf{f}} = E(\mathbf{f}|\mathcal{D}, \sigma_{\varepsilon}^2) = K(K + \sigma_{\varepsilon}^2 I)^{-1} \mathbf{x}
$$

$$
Var(\mathbf{f}|\mathcal{D}, \sigma_{\varepsilon}^2) = \sigma_{\varepsilon}^2 K(K + \sigma_{\varepsilon}^2 I)^{-1}.
$$

• Decomposition (fPCA)

$$
X(t) \approx \mu(t) + \hat{f}
$$

= $\mu(t) + \sum_{j=1}^{\infty} \xi_j \phi_j(t)$
 $\approx \mu(t) + \sum_{j=1}^{J} \xi_j \phi_j(t)$

 QQ

GPR model – asymptotic theory

 \bullet Suppose that $k(\cdot, \cdot)$ continuous and has a finite trace, then $f(t)$ has a representation

$$
f(t) = \sum_{j=1}^{\infty} \xi_j \phi_j(t) = \sum_{j=1}^{J} \xi_j \phi_j(t) + b^{1/2} z(t)
$$

where $\lambda_1 \geq \lambda_2 \ldots$, and ϕ_j is the eigen-function of $k(\cdot, \cdot)$ and $\xi_j \sim N(0, \lambda_j)$. **a** We therefore have RKHS

$$
{\cal H}_K = {\cal H}_0 \oplus {\cal H}_1,
$$

where \mathcal{H}_0 is the span of ϕ_1, \cdots, ϕ_s (null space) and \mathcal{H}_1 is the RKHS for K_1 .

 \bullet Let \mathcal{P}_1 be the orthogonal projection operator in \mathcal{H}_K onto \mathcal{H}_1 , and $f_{n,\lambda}$ be the nimimiser in \mathcal{H}_K of the regularised risk functional:

$$
\frac{1}{n}\sum_{i=1}^n(x_i-f(\mathbf{t}_i))^2+\lambda||\mathcal{P}_1f||_K,
$$

 Ω

メロメ メ都 メメ きょくきょう

GPR model – asymptotic theory

Theorem

Let $\hat{f}_{GP}(\boldsymbol{t}) = E(f(\boldsymbol{t})|x_1,\ldots,x_n)$, then

$$
\lim_{D\to\infty}\hat{f}_{GP}(\boldsymbol{t})=f_{n,\lambda}(\boldsymbol{t}),
$$

where $\lambda = \frac{\sigma^2}{nb}$ and $\bm{D} = diag(\lambda_1/b,\ldots,\lambda_S/b)$. $\lim_{\bm{D}\to\infty}$ means that each element tends to infinity.

 QQ

GPR model: posterior consistency

Theorem

(Choi, 2005) Let P_0 denote the joint conditional distribution of $\{x_n\}_{n=1}^{\infty}$ given the covariate assuming that f_0 is the true response function. Suppose that the values of the covariate in $[0,1]$ are fixed, i.e., known ahead of time. Then for every $\epsilon > 0$,

$$
\Pi\left\{f\in W_{\epsilon,n}^C|\mathcal{D}\right\}\to 0 \text{ a.s. } [P_0].
$$

The neighbourhood is defined as

$$
W_{\epsilon,n}=\left\{(f,\sigma)\;:\;\int|f(\boldsymbol{t})-f_0(\boldsymbol{t})|dQ_n(x)<\epsilon,\;\left|\frac{\sigma}{\sigma_0}-1\right|<\epsilon\right\}.
$$

 Ω

メロメ メ都 メメ ミメ メヨメ

GPR model: posterior consistency

Theorem

(Choi, 2005) Let P_0 denote the joint conditional distribution of $\{x_n\}_{n=1}^{\infty}$ given the covariate assuming that f_0 is the true response function. Suppose that the values of the covariate in $[0,1]$ are fixed, i.e., known ahead of time. Then for every $\epsilon > 0$,

$$
\Pi\left\{f\in W_{\varepsilon,n}^C|\mathcal{D}\right\}\to 0\,\,\text{a.s.}\,\,[P_0].
$$

The neighbourhood is defined as

$$
W_{\epsilon,n}=\left\{(f,\sigma)\;:\;\int|f(\boldsymbol{t})-f_0(\boldsymbol{t})|dQ_n(x)<\epsilon,\;\left|\frac{\sigma}{\sigma_0}-1\right|<\epsilon\right\}.
$$

Remarks: a good choice of hyper-parameters can improve the efficiency, but has no influence to the consistency

 Ω

GPR model: information consistency

K-L distance: $D[p, q] = \int (\log p - \log q) dP$.

Theorem

 \bullet

Upper bound of $D[P_0(x_1, \ldots, x_n|f_0), P_{GP}(x_1, \ldots, x_n)],$

$$
D[P_0(x_1,\ldots,x_n|f_0),P_{GP}(x_1,\ldots,x_n)]\leq \frac{1}{2}\|f_0\|_{\bm{K}}^2+\frac{1}{2}\log|\bm{I}_n+\bm{\mathsf{cK}}|,
$$

 $\|f\|_{\mathbf{K}}$ is the RKHS norm of f, and c is a certain constant. $P_{GP}(x_1, \ldots, x_n)$ – a Bayesian predictive distribution of x_1, \ldots, x_n using GP prior based on n observations.

Thus, the expected KL divergence divided by the sample size converges to zero as the sample size increases (Seeger, et al. 2008).

 QQ

メロメ メ御 メメ きょうくきょう

Decomposition of function-valued processes – Asymptotic theory

Theorem

For $N > 1$ for which $\lambda_N > 0$, functions $\{\phi_i, i = 1, ..., N\}$ provide the best finite dimensional approximations to $Z^c(u)$ with respect to minimizing criterion

$$
\operatorname{argmin}_{g_1,\ldots,g_N\in L^2(\mathcal{U})}\mathsf{E}\left\{\int_{\mathcal{U}}||Z^c(\boldsymbol{u})-\sum_{i=1}^N g_i(\boldsymbol{u})\xi_i^*||^2d\boldsymbol{u}\right\},\right.
$$

where $g_1,...,g_N\in L^2(\mathcal{U})$ are orthogonal, and $\xi_i^*=<\mathcal{Z}^c(\cdot),g_i(\cdot)>=\int \mathcal{Z}^c(\bm{u})g_i(\bm{u})d\bm{u}.$ The minimizing value is $\sum_{i=N+1}^{\infty} \lambda_i$.

 Ω

イロト 不優 ト 不重 ト 不重 トー

Decomposition of function-valued processes – Asymptotic theory

Theorem

For $N > 1$ for which $\lambda_N > 0$, functions $\{\phi_i, i = 1, ..., N\}$ provide the best finite dimensional approximations to $Z^c(u)$ with respect to minimizing criterion

$$
\operatorname{argmin}_{g_1,\ldots,g_N\in L^2(\mathcal{U})} E\left\{\int_{\mathcal{U}}||Z^c(\boldsymbol{u})-\sum_{i=1}^N g_i(\boldsymbol{u})\xi_i^*||^2d\boldsymbol{u}\right\},\,
$$

where $g_1,...,g_N\in L^2(\mathcal{U})$ are orthogonal, and $\xi_i^*=<\mathcal{Z}^c(\cdot),g_i(\cdot)>=\int \mathcal{Z}^c(\bm{u})g_i(\bm{u})d\bm{u}.$ The minimizing value is $\sum_{i=N+1}^{\infty} \lambda_i$.

Theorem

Suppose conditions $C1 - C3$ in Appendix hold, and $\hat{\mu}$ (**t**) satisfies $|\hat{\mu}(\boldsymbol{t}) - \mu(\boldsymbol{t})| = O_p[\{\log(n)/n\}^{1/2}],$ we have, for $1 \leq i \leq N$,

$$
||k_{\hat{\theta}}(\cdot, \cdot) - k_{\theta}(\cdot, \cdot)|| = O_p(\{\log(n)/n\}^{1/2}),
$$

\n
$$
||\hat{\lambda}_i - \lambda_i|| = O_p(\{\log(n)/n\}^{1/2}),
$$

\n
$$
||\hat{\phi}_i(\cdot) - \phi_i(\cdot)|| = O_p(\{\log(n)/n\}^{1/2}),
$$

\n
$$
||\hat{\xi}_i - \xi_i|| = O_p(\{\log(n)/n\}^{1/2}).
$$

An example using a general covariance structure

In this simulation study, we assume that the random process $f(t_1, t_2)$ has zero mean and covariance function given by

$$
Cov[f(t_1, t_2), f(t'_1, t'_2)] = \sum_{j=1}^{20} \alpha_j \phi_j(t_1 + t_2) \phi_j(t'_1 + t'_2),
$$

where $\phi_j(\cdot)$ are Chebyshev polynomials, $\alpha_j=j^{-3/2}$ and $\boldsymbol{t}\in[-1,1]^2.$

We have generated 100 curves from $X(\bm{t})=f(\bm{t})+\varepsilon,~\sigma_{\varepsilon}^2=0.1^2,$ observed at $n_1\times n_2=$ $20 \times 20 = 400$ equally spaced points.

 Ω

イロト イ部 トイ磨 トイ磨 トー

Figure 2: First four leading eigensurfaces $\phi(t_1, t_2)$ of the true model (left column) and the corresponding estimated eigensurfaces $\hat{\phi}(t_1, t_2)$ from the nonstationary GP model (centre) and Product FPCA model (right).

 299

メロメ メ御 メメ きょくき

Figure 3: Comparison of cumulative FVEs obtained by the true, and Product FPCA, and nonstationary GP (NSGP) models.

K ロ ▶ K 御 ▶ K 君

 \sim 一本 語 299

Application 1: Non-stationary Gaussian Processes applied to ASFR data

BGR

age

JPN

HUN

ESP

year

age

NLD

age

PRT

age

SVK

0.25
0.20
0.15
0.06
0.06

age

 290

Shi (NCL & ATI, UK) age

Figure5: First three eigensurfaces $\hat{\phi}_i(s,t)$ $\hat{\phi}_i(s,t)$ $\hat{\phi}_i(s,t)$, $j = 1,2,3$, of the Empirical[, C](#page-41-0)[o](#page-41-0)[m](#page-36-0)po[si](#page-35-0)[te](#page-36-0) [G](#page-41-0)[P,](#page-0-0) [and](#page-45-0) **Product FPCA [co](#page-39-0)variance functions estimated for ASFR of 17 cou[nt](#page-41-0)[ri](#page-39-0)[es.](#page-40-0)**
Shi (NCL & ATI, UK) Modelling function-valued processes 290 [Modelling function-valued processes](#page-0-0) 17/12/19 28/30

- By avoiding the covariance separability assumption, we can provide additional insights into multi-dimensional functional data;
- Extensions to cases where Q *>* 2 are straightforward;
- \bullet We just need one realisation of the random process X to estimate its covariance structure;
- Convolved GPs can be used to measure the cross-covariance structure between functions.

 Ω

- By avoiding the covariance separability assumption, we can provide additional insights into multi-dimensional functional data;
- Extensions to cases where Q *>* 2 are straightforward;
- \bullet We just need one realisation of the random process X to estimate its covariance structure;
- Convolved GPs can be used to measure the cross-covariance structure between functions.
- **Interesting topics for future research**
	- **►** Extension to multi-variate function-valued processes, i.e. $X(t) \in \mathbb{R}^m$, $t \in \mathbb{R}^Q$

 Ω

- By avoiding the covariance separability assumption, we can provide additional insights into multi-dimensional functional data;
- Extensions to cases where Q > 2 are straightforward;
- \bullet We just need one realisation of the random process X to estimate its covariance structure;
- Convolved GPs can be used to measure the cross-covariance structure between functions.
- **Interesting topics for future research**
	- ^I Extension to multi-variate function-valued processes, i.e. X(**t**) ∈ Rm*,* **t** ∈ R^Q
	- \triangleright The use of other process priors: e.g. heavy-tailed processes (Shah et al., 2014; Wang et al., 2017; Cao et al., 2018): need efficient algorithm
	- Extension to Non-Gaussian data is challenging.

 Ω

- By avoiding the covariance separability assumption, we can provide additional insights into multi-dimensional functional data;
- Extensions to cases where Q *>* 2 are straightforward;
- \bullet We just need one realisation of the random process X to estimate its covariance structure;
- Convolved GPs can be used to measure the cross-covariance structure between functions.
- **Interesting topics for future research**
	- **►** Extension to multi-variate function-valued processes, i.e. $X(t) \in \mathbb{R}^m$, $t \in \mathbb{R}^Q$
	- \triangleright The use of other process priors: e.g. heavy-tailed processes (Shah et al., 2014; Wang et al., 2017; Cao et al., 2018): need efficient algorithm
	- Extension to Non-Gaussian data is challenging.

Thanks for listening!

 Ω

Chen, K., Delicado, P., and Muller, H.-G. (2017). Modelling function-valued stochastic processes, ¨ with applications to fertility dynamics. J. R. Statist. Soc. B, 79(1):177-196.

Konzen, E., Shi, J. Q. and Wang, Z. (2019). Modelling function-valued processes with nonseparable covariance structure. Technical report, Newcastle University.

Paciorek, C. J. and Schervish, M. J. (2006). Spatial modelling using a new class of nonstationary covariance functions. Environmetrics, 17(5):483–506.

Risser, M. and Calder, C. (2017). Local likelihood estimation for covariance functions with spatiallyvarying parameters: The convoSPAT package for R. Journal of Statistical Software, Articles, 81(14):1–32.

Shi, J. Q. and Choi, T. (2011). Gaussian process regression analysis for functional data. CRC Press.

Yao, F., Müller, H.-G. and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal data. J. Am. Statist. Ass., 100, 577–590.

 QQ

メロメ メ都 メメ きょうくぼ メー