
Math 350 Fall 2011 Worksheet 1

Name:

The goal of this worksheet is to introduce to you the concept of a quotient space,
and to guide you through the proof the rank-nullity theorem.

From now on, let V be a vector space over a field F , and W be a subspace of V .

Definition 1. We say two vectors v1, v2 ∈ V are equivalent1, and write v1 ∼ v2, if
and only if v1 − v2 ∈ W .

Question 1. For example, suppose now V = R2, F = R and W = {(x, 0) : x ∈ R}
is the x-axis.

(a) Can you find all vectors in V that are equivalent to the vector (0, 0)? Represent
your answer on the Cartesian plane.

(b) Can you find all vectors in V that are equivalent to the vector (1, 2)? Represent
your answer on the Cartesian plane.

(c) Can you find all vectors in V that are equivalent to the vector (x, y)? Represent
your answer on the Cartesian plane.

1For those who knows equivalence relations, this is an equivalent relation on V , in the sense
that

1. v ∼ v for all v ∈ V ,
2. v1 ∼ v2 if and only if v2 ∼ v1, and
3. if v1 ∼ v2 and v2 ∼ v3, then v1 ∼ v3.
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So in the above example, the set of vectors in R2 that are equivalent to a given
vector (x, y) is given by

{(x, y) + (u, v) : (u, v) ∈ W}.

In general, it can be shown, that if V is vector space over a field F and W is a
subspace, then the set of vectors in V that are equivalent to a given vector v ∈ V
is given by

{v + w : w ∈ W}.
Since this set of vectors is obtained by adding to the given v an arbitrary vector
w ∈ W , this set will also be written as v+W . In other words, we have the following
definition:

Definition 2. If v is a vector in V and W is a subspace of V , we define the set
v + W to be a subset of V given by

v + W := {v + w : w ∈ W}.

Definition 3. Any subset of V of the form v +W for some v ∈ V is called a coset
of W in V , and the set of cosets of W in V is denoted as V/W .

Let’s check your understanding now. Do you understand the following state-
ments?

(a) A coset of the x-axis in R2 is a line in R2 that is parallel to the x-axis.
(b) R2/(x-axis) is the set of all lines in R2 that is parallel to the x-axis.

Question 2. Now let’s look again at the example in Question 1, i.e. assume
V = R2 and W = x-axis. We knew that the line {(x, y) : y = 2} is an element of
V/W . In fact this line can be written as (1, 2) + W , as we have seen in Question
1(b). But there are actually many ways of writing this coset in the form v + W
where v ∈ V . For example, the same line can also be written as (7, 2) + W , i.e.

(1, 2) + W = (7, 2) + W.

(Why?) In general, check, in this example, that

(x1, y1) + W = (x2, y2) + W if and only if (x1, y1)− (x2, y2) ∈ W.

Back to our general situation. Suppose V is a vector space over a field F and W
is a subspace of V . It can be shown that

Theorem 1. Two cosets v1 + W and v2 + W are equal (as subsets of V ) if and
only if v1 − v2 ∈ W .
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The proof of this is left as an exercise.

So far we have defined V/W as a set of subsets of V . To proceed further, we
are going to make V/W a vector space over F . Now V/W is a set of sets. Every
element of V/W is a set of vectors from V . It is thus perhaps not completely clear
how one should add two elements of V/W . We make the following definition. Take
two elements from V/W . They are then of the form v1 + W and v2 + W for some
v1, v2 ∈ V . (Why?)

Definition 4. We define the sum of two cosets of W in V to be another coset of
W in V , according to the formula

(v1 + W ) + (v2 + W ) := (v1 + v2) + W.

Question 3. Suppose we are in the example in Question 1, i.e. V = R2 and
W = x-axis. Compute ((1, 2) + W ) + ((3, 7) + W ). Draw your answer, as well as
the two cosets (1, 2) + W and (3, 7) + W , on the same Cartesian plane.

Now the problem is that given an element of V/W , there are many ways of writing
it as v+W with v ∈ V . So suppose you have two elements of V/W , and you decide
to write them as v1 + W and v2 + W for some particular choice of v1, v2 ∈ V . And
suppose your friend comes in, and decides to write the same elements of V/W as
u1 + W and u2 + W instead, for some different choices u1, u2 ∈ V . Suppose both
of you add the two elements of V/W using Definition 4. Do you two get the same
answer? You had better hope that this is the case, because otherwise the definition
we made would not be well-defined. Fortunately, this is the case:

Question 4. Prove that if

v1 + W = u1 + W and v2 + W = u2 + W

for some v1, v2, u1, u2 ∈ V , then

(v1 + v2) + W = (u1 + u2) + W.

(Hint: use Theorem 1 and the properties of a subspace.)

Next, now that we have defined an addition on V/W , we proceed to define a
scalar multiplication on V/W . Recall that V was a vector space over a field F .
Now take an element of V/W . Again it is then a set of the form v + W for some
v ∈ V .
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Definition 5. If c ∈ F and v +W ∈ V/W , we define their scalar multiplication by

c · (v + W ) := (c · v) + W.

Question 5. Let’s first understand what this means in the example in Question
1. If V = R2, F = R and W = x-axis, compute 4 · ((1, 2) + W ). Draw both your
answer, as well as the original coset (1, 2) + W , on the same Cartesian plane.

Again we need to check that the scalar multiplication in Definition 5 is well-
defined, because there are many ways of writing a given coset as v + W for some
v ∈ V . So we have

Question 6. Prove that if
v + W = u + W

for some v, u ∈ V , and if c ∈ F , then

(c · v) + W = (c · u) + W.

(Hint: use Theorem 1 and the properties of a subspace.)

Finally, we are ready to state the first main theorem today:

Theorem 2. If V is a vector space over a field F and W is a subspace of V , then
V/W is a vector space over F under the addition and scalar multiplication defined
above.

A vector space of the form V/W is usually called a quotient vector space, or a
quotient space for short.

Question 7. Let’s understand this in the example in Question 1. Suppose V = R2,
F = R and W = x-axis, and we want to see whether V/W is a vector space.

(a) Is the sum of two elements of V/W another element of V/W? (Hint: What is
the sum ((x1, y1) + W ) + ((x2, y2) + W )?)
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(b) Is it true that ((x1, y1)+W )+ ((x2, y2)+W ) = ((x2, y2)+W )+ ((x1, y1)+W )
for all (x1, y1), (x2, y2) ∈ V ?

(c) What would an additive identity be in V/W under the addition we defined?
(Hint: compute ((x, y) + W ) + ((0, 0) + W ) for all (x, y) ∈ V .)

(d) If (x, y) ∈ V , what would the additive inverse of ((x, y)+W ) be in V/W under
the addition we defined? Represent your answer on a Cartesian plane.

(e) Is it true that 1 · ((x, y) + W ) = ((x, y) + W ) for all (x, y) ∈ V ?

(f) Is it true that (c1 + c2) · ((x, y) + W ) = c1 · ((x, y) + W ) + c2 · ((x, y) + W ) for
all c1, c2 ∈ F and all (x, y) ∈ V ?

There are certainly other axioms that one has to check to prove that V/W is a
vector space in this situation, but I think the above gives you an idea of how the
other axioms should be checked.

The proof of Theorem 2 in full generality will be left as an exercise. Basically,
to prove Theorem 2, you will need to check the long list of axioms of a vector space
like we did above for the specific example, since V/W is not a subset of any vector
space; in particular, one should always remember that V/W is NOT a subspace of
V .

We will need the following theorem about the dimension of a quotient space.

Theorem 3. Suppose V is a vector space over a field F and W is a subspace of
V . If V is finite dimensional, then so is V/W , and

dim(V/W ) = dim(V )− dim(W ).

Proof. Let n = dim(V ) and m = dim(W ). Then m ≤ n, and we want to show
that dim(V/W ) = n − m. Now pick a basis of W . This basis will consists of m
vectors; call them w1, w2, . . . , wm. Then extend it to a basis of V ; i.e. pick some
vectors v1, . . . , vk ∈ V such that {w1, . . . , wm, v1, . . . , vk} is a basis of V . This is
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always possible by a theorem we proved before the midterm. Now any basis of V has
exactly n vectors. So m+k = n, i.e. k = n−m. We claim that {v1+W, . . . , vk+W}
is a basis of V/W . If that is the case, then dim(V/W ) = k = n −m, which is our
desired result.

The proof of the claim is left as an exercise. �

Finally, we will prove the following rank-nullity theorem:

Theorem 4 (Rank-nullity theorem). Suppose V , V ′ are vector spaces over a field
F , and dim(V ) < ∞. Suppose T : V → V ′ is a linear map. Then the image of T
is finite dimensional, and

dim(image(T )) = dim(V )− dim(kernel(T )).

The theorem is such called since dim(image(T )) is sometimes called the rank of
T , and dim(kernel(T )) is sometimes called the nullity of T . The theorem says that
the sum of the rank and nullity of a linear map is equal to the dimension of its
domain, if the domain is finite dimensional.

The proof consists of several steps. First, let W = kernel(T ), and U = image(T ).
We knew from our previous class that W is a subspace of V , and that U is a vector
space over F . Since W is a subspace of V , it makes sense to talk about the quotient
space V/W . We claim that we can define a new map

T̃ : V/W → U

such that
T̃ (v + W ) := T (v) for all v ∈ V .

There is again a problem of well-definedness; an element of V/W can be written in
the form v + W for many different choices of v ∈ V . Hence we need to answer the
following question:

Question 8. If
v1 + W = v2 + W

for some v1, v2 ∈ V , is it true that

T (v1) = T (v2)?

(Hint: The answer had better be yes, and to check that one uses Theorem 1 again,
together with the fact that W = kernel(T ).)

Now we have checked that the map T̃ : V/W → U we introduced above is well-
defined. To proceed further, we claim that T̃ is linear:
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Question 9. Check that T̃ : V/W → U is linear. (Hint: What do you need to
check? You need to check that

T̃ ((v1 + W ) + (v2 + W )) = T̃ (v1 + W ) + T̃ (v2 + W )

for all v1, v2 ∈ V , and

T̃ (c · (v + W )) = c · T̃ (v + W )

for all c ∈ F and all v ∈ V .)

Next, we claim that T̃ : V/W → U is an isomorphism between the two vector
spaces:

Question 10. Check that T̃ is injective. (Hint: If T̃ (v + W ) = 0 for some v ∈ V ,
what can you say about v? Can you conclude that v + W = 0 + W?)

Question 11. Check that T̃ is surjective. (Hint: Given u ∈ U , there exists v ∈ V

such that T (v) = u. (Why?) Now what is T̃ (v + W )? Conclude the proof from
here.)

Hence to conclude, T̃ : V/W → U is an isomorphism. Thus

dim(U) = dim(V/W ) = dim(V )− dim(W );

in other words,

dim(image(T )) = dim(V )− dim(kernel(T )).

This proves the rank-nullity theorem.
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Exercises.

1. Let V = R2 be a vector space over R, and W = {(x, y) : x + y = 0} be a
subspace of V . Represent on a Cartesian plane some cosets of W in V . Computer
((0, 3)+W )+ ((0,−4)+W ) and 3 · ((0, 2)+W ). Can you describe how you add
two elements of V/W with a picture?

2. Let V = R3 be a vector space over R, and W1 = {(x, y, z) : z = x + y} be a
subspace of V . Draw some cosets of W1 in V on a Cartesian coordinate chart.
Also, if now W2 = {(x, y, z) : x = 0, y = z}, so that W2 is also a subspace of V ,
can you draw some cosets of W2 in V on a separate picture?

3. Prove Theorem 1. (Hint: Suppose first v1 − v2 ∈ W . Then v1 = v2 + w0 for
some w0 ∈ W . Now we need to check v1 + W ⊆ v2 + W , and v2 + W ⊆ v1 + W .
But the former follows, since if w ∈ W , then v1 + w = v2 + w0 + w ∈ v2 + W .
Similarly, one can check that v2 + W ⊆ v1 + W . Thus v1 + W = v2 + W , as
desired.

Next, suppose v1 +W = v2 +W . Then since v1 = v1 +0 and 0 ∈ W , we have
v1 ∈ v1 + W . Thus v1 ∈ v2 + W , i.e. v1 = v2 + w0 for some w0 ∈ W . Thus
v1 − v2 = w0 ∈ W .)

4. Suppose w1, . . . , wm, v1, . . . , vk are as in the proof of Theorem 3. Let

S = {v1 + W, . . . , vk + W}
be a subset of V/W with k elements.
(a) Prove that S is linearly independent. (Hint: Suppose

a1(v1 + W ) + · · ·+ ak(vk + W ) = 0 + W

for some a1, . . . , ak ∈ F . Then one has

a1v1 + · · ·+ akvk ∈ W

(why?), and thus there are coefficients b1, . . . , bm ∈ F such that

a1v1 + · · ·+ akvk = b1w1 + · · ·+ bmwm.

(why?) Now conclude that a1 = · · · = ak = 0.)
(b) Prove that S spans V/W . (Hint: Pick an element from V/W . Then it is of

the form v+W for some v ∈ V . Now there are scalars a1, . . . , ak, b1, . . . , bm ∈
F such that

v = a1v1 + · · ·+ akvk + b1w1 + · · ·+ bmvm.

(why?) Then

v + W =a1(v1 + W ) + · · ·+ ak(vk + W )

+ b1(w1 + W ) + · · ·+ bm(wm + W ).

(why?) Now w1 + W = · · · = wm + W = 0 + W (why?). So the above
equation says

v + W = a1(v1 + W ) + · · ·+ ak(vk + W ).

(why?) This concludes the proof. (why?))
Together, we proved that S is a basis of V/W , establishing the claim in the proof
of Theorem 3.

5. Give a proof of Theorem 2.


