
Math 350 Fall 2011
Notes about Diagonalization and Invariant subspaces

1. Diagonalization of a matrix

In this section, let A be an n× n matrix with entries in a field F .

Definition 1. The characteristic polynomial of A is by definition the polynomial

f(t) = det(A− tI),

where I is the n× n identity matrix.

It is thus a polynomial of degree n in a single variable t with coefficients in F .

Question 1. Consider the following 2× 2 real matrix(
1 −4
0 −1

)
.

Compute its characteristic polynomial.

Definition 2. λ is said to be an eigenvalue of A if it is a zero of the characteristic
polynomial of A in F .

So λ ∈ F is an eigenvalue of A, if and only if det(A − λI) = 0. It then follows
that the nullspace of A − λI is non-zero; so there exists a non-zero vector v ∈ Fn
such that (A− λI)v = 0, i.e. Av = λv.

Definition 3. A vector v ∈ Fn is said to be an eigenvector of A, if v 6= 0 and
Av = λv for some λ ∈ F .

In fact if v 6= 0 and Av = λv, then v is said to be an eigenvector of A corre-
sponding to the eigenvalue λ. Equivalently, if v 6= 0, then v is an eigenvector of A
corresponding to λ, if and only if v is in the nullspace of A− λI.

Question 2. Find all eigenvalues and eigenvectors of the matrix in Question 1.

Definition 4. A is said to be diagonalizable (over F ) if there exists an invertible
matrix P , and a diagonal matrix D, both of which are n×n and have entries in F ,
such that

A = PDP−1.

If A is diagonalizable, a representation of A in the form PDP−1, where P is in-
vertible and D is diagonal, is called a diagonalization of A.

In other words, A is diagonalizable if and only if it is similar to a diagonal matrix
(over F ).

Question 3. Show that the matrix in Question 1 over R is diagonalizable over R,
and diagonalize it.

Theorem 1. A is diagonalizable over F , if and only if A has n linearly independent
eigenvectors in Fn.
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Proof. Suppose A = PDP−1 for some invertible matrix P and a diagonal matrix
D. Then AP = PD, so if v1, . . . , vn are the columns of P , and λ1, . . . , λn are the
entries on the diagonal of D, then Avi = λivi for all i = 1, . . . , n. In particular,
v1, . . . , vn are eigenvectors of A. They are linearly independent since P is invertible.

Conversely, suppose v1, . . . , vn are linearly independent eigenvectors of A, say
corresponding to eigenvalues λ1, . . . , λn ∈ F . Let P be the matrix whose i-th row
is vi, and D be the diagonal matrix whose i-th entry on the diagonal is λi. Then
P is invertible, since its columns are linearly independent, and we have AP = PD,
since Avi = λivi for i = 1, 2, . . . , n. It follows that A = PDP−1, which implies that
A is diagonalizable over F . �

Definition 5. A set of n linearly independent eigenvectors of A in Fn is said to
be an eigenbasis of Fn associated to A.

The above theorem can now be reformulated as

Theorem 2. A is diagonalizable over F , if and only if there exists an eigenbasis
of Fn associated to A.

Definition 6. The span of all eigenvectors of A corresponding to an eigenvalue λ
of A is called the eigenspace of A corresponding to λ.

Thus any eigenspace of A is in particular a subspace of Fn. In general one
should think about eigenspaces instead of eigenvectors as much as possible, since
eigenspaces are canonical objects associated to a matrix, while eigenvectors are not.

2. Diagonalization of a linear map

In this and subsequent sections, V is a vector space over F of dimension n <∞,
and T : V → V is a linear map from V into itself.

Recall that given any ordered basis α of V , one can find a matrix representation
[T ]α of T with respect to α. This matrix is an n× n matrix with entries in F , and
if β is a different ordered basis of V , then [T ]β and [T ]α are similar to each other.
Since the determinant of any two similar matrices are the same, we can make the
following definition:

Definition 7. The determinant of a linear map T : V → V is defined to be the
determinant of [T ]α, where α is any ordered basis of V . We denote this by det(T ).

This definition is independent of the choice of α. With this we define:

Definition 8. The characteristic polynomial of a linear map T : V → V is defined
to be the polynomial f(t) = det(T − tI), where I : V → V is the identity map.

In other words, the characteristic polynomial of T is given by

f(t) = det([T ]α − tI),
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where α is any ordered basis of V and I is the identity matrix. This is independent
of the choice of α.

Question 4. Let V be the space of real polynomials of degree ≤ 2. It is a vector
space over R. Let T : V → V be the linear map

T (p(x)) = p′(x).

Find the characteristic polynomial of T .

Definition 9. λ is said to be an eigenvalue of T if it is a zero of the characteristic
polynomial of T in F .

So λ ∈ F is an eigenvalue of T , if and only if det(T − λI) = 0. It then follows
that the nullspace of T − λI is non-zero; so there exists a non-zero vector v ∈ V
such that1 (T − λI)v = 0, i.e. Tv = λv. Conversely, if there is a non-zero vector
v ∈ V such that Tv = λv, then λ is an eigenvalue of T .

Definition 10. A vector v ∈ V is said to be an eigenvector of T , if v 6= 0 and
Tv = λv for some λ ∈ F .

In fact if v 6= 0 and Tv = λv, then v is said to be an eigenvector of T corre-
sponding to the eigenvalue λ. Equivalently, if v 6= 0, then v is an eigenvector of T
corresponding to λ, if and only if v is in the nullspace of T − λI.

Question 5. Find all the eigenvalues and eigenvectors of T where T is the linear
map in Question 4.

Definition 11. A linear map T : V → V is said to be diagonalizable, if there exists
an ordered basis α of V such that the matrix representation [T ]α of T is a diagonal
matrix.

It follows that such an ordered basis of V consists only of eigenvectors of T ; in
fact α = {v1, . . . , vn}, and [T ]α is a diagonal matrix with entries λ1, . . . , λn on the
diagonal, then Tvi = λivi for all i = 1, . . . , n, and thus α consists of eigenvectors of
T .

Conversely, if α is an ordered basis of T consisting only of eigenvectors of T , say
α = {v1, . . . , vn}, and Tvi = λivi for all i = 1, . . . , n where λ1, . . . , λn ∈ F , then
the matrix representation [T ]α of T is a diagonal matrix with entries λ1, . . . , λn,
and T is diagonalizable. Thus we have proved:

Theorem 3. A linear map T : V → V is diagonalizable, if and only if there exists
a basis of V that consists only of eigenvectors of T .

Such a basis is usually called an eigenbasis of V associated to T . Since in a
vector space of dimension n, n vectors form a basis if and only if they are linearly
independent, we have

Theorem 4. A linear map T : V → V is diagonalizable, if and only if there exists
n linearly independent eigenvectors of T , where n = dim(V ).

1From now on we write Tv for T (v) for the sake of brevity.
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Question 6. Show that the linear map T in Question 4 is not diagonalizable.

Definition 12. If T : V → V is diagonalizable, then a diagonalization of T is
by definition an ordered eigenbasis of V associated to T , together with the matrix
representation [T ]α.

In other words, it is a set of n linearly independent eigenvectors of T , and the
diagonal matrix that consists of their corresponding eigenvalues.

Question 7. Let V be the space of all real polynomials of degree ≤ 1. It is a vector
space over R. Let S : V → V be defined by

S(p(x)) = 2(x− 1)p′(x)

for all p(x) ∈ V . Show that S is diagonalizable, and find a diagonalization of S.

Finally, comparing what we had in these two sections, we have:

Theorem 5. Suppose A is an n×n matrix with entries in F . Then A is diagonal-
izable, if and only if the linear map T : Fn → Fn associated to A is diagonalizable.

We also have:

Definition 13. The span of all eigenvectors of T corresponding to an eigenvalue
λ of T is called the eigenspace of T corresponding to λ.

Thus any eigenspace of T is in particular a subspace of V . Again in general one
should think about eigenspaces instead of eigenvectors as much as possible when
one considers linear maps.

3. Invariant subspaces

Again, in this section, T : V → V is a linear map from V into itself, where V is
a vector space over a field F , and dim(V ) = n <∞.

Definition 14. W is said to be an invariant subspace associated to T if it is a
subspace of V , and T (w) ∈W for all w ∈W .

Sometimes we also say that W is a T -invariant subspace of V .

Question 8. For example, let T : R2 → R2 be given by

T

(
x
y

)
=

(
2 −4
0 −1

)(
x
y

)
.

Show that the x-axis is a T -invariant subspace of R2, while the y-axis is not.

If T : V → V is a linear map, then the following are all trivial T -invariant
subspaces of V : {0}, V , the nullspace of T , and the range of T . Also, any eigenspace
of T , i.e. the nullspace of T − λI for any λ, is a T -invariant subspace of V ; so is
the range of T − λI for any λ.
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Definition 15. If T : V → V is linear and W is a T -invariant subspace of V , one
can define the restriction of T to W by

T |W : W →W

T |W (w) = T (w) for all w ∈W.

The restriction of T to W is a linear map from W to W . One important fact is:

Theorem 6. If W is a T -invariant subspace of V , then the characteristic polyno-
mial of T |W divides the characteristic polynomial of T ; more precisely, if f(t) and
g(t) are the characteristic polynomials of T and T |W respectively, then there is a
polynomial q(t) with coefficients in F such that

f(t) = g(t)q(t).

Proof. Suppose α = {v1, . . . , vm} is an ordered basis of W . Extend it to an ordered
basis β = {v1, . . . , vn} of V . Then the matrix representation [T ]β of T is of the
form (

A B
0 C

)
where A is an m × m matrix, B is an m × (n − m) matrix, C is an (n − m) ×
(n − m) matrix and 0 is the (n − m) × m zero matrix. In fact A is then the
matrix representation [T |W ]α. It follows that if f(t) and g(t) are the characteristic
polynomials of T and T |W respectively, then

f(t) = det

((
A B
0 C

)
− tI

)
= det

(
A− tI B

0 C − tI

)
,

so
f(t) = det(A− tI) det(C − tI) = g(t) det(C − tI),

and letting q(t) = det(C − tI) we have the claim. �

Question 9. For example, if W is the x-axis, and T is the linear map in Ques-
tion 8, find the characteristic polynomial of T |W , and show that it divides the
characteristic polynomial of T .

One important example of construction of invariant subspaces is the following.
Suppose T : V → V is a linear map, where V is a finite dimensional vector space
over a field F . Suppose v ∈ V , v 6= 0. Let k be the largest positive integer such that
{v, Tv, T 2v, . . . , T k−1v} are linearly independent2. Such k exists since V is finite
dimensional. Let W be the span of {v, Tv, . . . , T k−1v}. Then W is a subspace of
V , and we claim that W is T -invariant: in fact if w ∈W , then

w = a0v + a1Tv + · · ·+ ak−1T
k−1v

for some scalars a0, . . . , ak−1 ∈ F , so

Tw = a0Tv + a1T
2v + · · ·+ ak−1T

kv.

2From now on, we write T i for the composition of i copies of T . In other words, T 2v is a

shorthand of T (Tv), T 3v is a shorthand for T (T (Tv)), etc. More generally, if f(t) is a polynomial

in a single variable t, say f(t) = a0 + a1t+ · · ·+ amtm, and T : V → V is a linear map, then f(T )
is by definition a linear map from V to V such that f(T )v = a0v + a1Tv + · · · + amTmv for all

v ∈ V .
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But T kv is a linear combination of v, Tv, . . . , T k−1v, since {v, Tv, . . . , T k−1v, T kv}
is linearly dependent. Thus we have Tw ∈W , which proves that W is T -invariant.

Now {v, Tv, . . . , T k−1v} is a basis of W (why?), so dim(W ) = k. If

T kv = −b0v − b1Tv − · · · − bk−1T k−1v

for some scalars b0, . . . , bk−1, then the characteristic polynomial of T |W can be
shown to be

g(t) = (−1)k(b0 + b1t+ · · ·+ bk−1t
k−1 + tk)

(check!), so in particular g(T )(v) = (−1)k(b0v+b1Tv+ · · ·+bk−1T
k−1v+T kv) = 0.

Now if f(t) is the characteristic polynomial of T , then g(t) divides f(t), i.e. there
exists a polynomial q(t) with coefficients in F such that f(t) = g(t)q(t). It follows
that f(T )(v) = q(T )g(T )v = q(T )(0) = 0. Since this is true for all v ∈ V , we see
that f(T ) is the zero map from V to V . This proves:

Theorem 7 (Cayley-Hamilton). If V is a finite dimensional vector space over
a field F , T : V → V is a linear map, and f(t) is the characteristic polynomial
of T , then the linear map f(T ) : V → V is the zero map, i.e. T ‘satisfies’ the
characteristic polynomial of T .

Corollary 8. If A is an n × n matrix with entries in a field F , and f(t) is the
characteristic polynomial of A, then f(A) is the zero matrix.

4. Criteria about diagonalizability

Again in this section, V is a vector space over a field F of dimension n < ∞,
and T : V → V is a linear map from V into itself. We state some important criteria
about the diagonalizability of T .

Theorem 9. If v1, . . . , vk ∈ V are eigenvectors of T corresponding to the eigenval-
ues λ1, . . . , λk ∈ F , and the eigenvalues λ1, . . . , λk are pairwise distinct, then the
set of vectors {v1, . . . , vk} is linearly independent.

Proof. The proof is by induction on k. The claim is trivial if k = 1. Now when
k = 2, i.e. if v1, v2 are eigenvectors of T corresponding to eigenvalues λ1 and λ2,
with λ1 6= λ2, then suppose

a1v1 + a2v2 = 0

for some scalars a1, a2. Applying T − λ2I to both sides, we get

a1(λ1 − λ2)v1 = 0,

which implies a1 = 0. Hence a2 = 0. So the case k = 2 is proved.

More generally, suppose the claim is true for a certain value of k. Suppose
one has k + 1 eigenvectors of T , namely v1, . . . , vk+1, corresponding to eigenvalues
λ1, . . . , λk+1, such that no two of the λi’s are equal. Then if a1, . . . , ak+1 are scalars
such that

a1v1 + · · ·+ ak+1vk+1 = 0,
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by applying T − λk+1I to both sides, we get

a1(λ1 − λk+1)v1 + · · ·+ ak(λk − λk+1)vk = 0.

By induction hypothesis, {v1, . . . , vk} are linearly independent, so

a1(λ1 − λk+1) = a2(λ2 − λk+1) = · · · = ak(λk − λk+1) = 0.

Since λ1, . . . , λk are all different from λk+1, this implies

a1 = · · · = ak = 0,

so ak+1 = 0 as well, and that completes the induction. �

Corollary 10. If T : V → V has n distinct eigenvalues over F , where n = dim(V ),
then T is diagonalizable.

Corollary 11. Suppose V1, . . . , Vk are eigenspaces of T corresponding to eigenval-
ues λ1, . . . , λk, and the eigenvalues λ1, . . . , λk are pairwise distinct.

(a) If v1 ∈ V1, . . . , vk ∈ Vk satisfies

v1 + · · ·+ vk = 0,

then

v1 = · · · = vk = 0.

(b) If β1, . . . , βk are linearly independent subsets of V1, . . . , Vk respectively, then
β1 ∪ β2 ∪ · · · ∪ βk is a linearly independent subset of V .

These are easy corollaries of the previous theorem. Their proofs are left as
exercises.

Next is a little piece of terminology from algebra:

Definition 16. If p(t) is a polynomial of one variable with coefficients in a field
F and that has degree n, then we say that p(t) splits over F if there are scalars
c, a1, . . . , an ∈ F such that

p(t) = c(t− a1)(t− a2) . . . (t− an).

In other words, p(t) is said to split over F if and only if p(t) can be completely
factorized into a product of linear factors with coefficients in F .

Question 10. Show that the polynomial t2 + 1 splits over C, but not over R.

Theorem 12. Suppose V is a finite dimensional vector space over F , and a linear
map T : V → V is diagonalizable. Then the characteristic polynomial of T splits
over F .

Definition 17. If λ is an eigenvalue of a linear map T : V → V , its algebraic
multiplicity is the number of times the factor (t−λ) appears in the factorization of
the characteristic polynomial of T , and its geometric multiplicity is the dimension
of the eigenspace corresponding to λ.
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Question 11. Suppose V is the vector space of real polynomials of degree ≤ 2 on
R. Let T : V → V be the linear map defined by

T (p(x)) = 2(x− 1)p′(x) + (x− 1)2p′′(x).

Find the eigenvalues of T , and their algebraic and geometric multiplicities.

From Theorem 12, we have:

Lemma 1. Suppose T : V → V is a linear map and dim(V ) = n. If T is diagonal-
izable, then the sum of the algebraic multiplicities of the eigenvalues of T is equal
to n.

This is because if T is diagonalizable over F , then by Theorem 12, the char-
acteristic polynomial of T splits, meaning that the characteristic polynomial of T
has exactly n zeroes (counting multiplicities) in F . Thus the sum of the algebraic
multiplicities of the eigenvalues of T is n, as desired.

The main result of this section is:

Theorem 13. The algebraic multiplicity of any eigenvalue of T is bigger than or
equal to its geometric multiplicity. Furthermore, T is diagonalizable, if and only if
equality holds for every eigenvalue of T , i.e. if and only if the algebraic multiplicity
of every eigenvalue of T is equal to its geometric multiplicity.

Proof. If λ is an eigenvalue of T and M , m are its algebraic multiplicity and geo-
metric multiplicities respectively, we first show m ≤ M . To do so, let W be the
eigenspace of T corresponding to λ, and T |W be the restriction of T to W . Let
also f(t) be the characteristic polynomial of T , and g(t) be the characteristic poly-
nomial of T |W . Then by Theorem 6, g(t) divides f(t). But dim(W ) = m, and by
computing explicitly the characteristic polynomial of T |W , we get

g(t) = (λ− t)m.
Now M is the number of factors of (λ − t) that arises in the factorization of f(t).
So from (λ− t)m divides f(t), we conclude that m ≤M , which is the desired claim.

Next, suppose the algebraic multiplicity of every eigenvalue of T is equal to its
geometric multiplicity. Then let λ1, . . . , λk be a listing of the distinct eigenvalues
of T , and M1, . . . ,Mk be their corresponding algebraic or geometric multiplicities.
By Lemma 1, we get

M1 +M2 + · · ·+Mk = n.

Now let V1, . . . , Vk be the eigenspaces of T corresponding to λ1, . . . , λk. Then their
dimensions are M1, . . . ,Mk respectively. Let β1, . . . , βk be a basis of V1, . . . , Vk
respectively. Then β := β1 ∪ · · · ∪ βk is linearly independent by Corollary 11(b).
Furthermore, β has M1 + · · · + Mk = n vectors, and all elements of β are all
eigenvectors of T . Thus T has n linearly independent eigenvectors, which shows
that T is diagonalizable.

Now suppose T is diagonalizable. Then there exists an eigenbasis β of V associ-
ated to T . Let λ1, . . . , λk be a listing of the distinct eigenvalues of T , and V1, . . . , Vk
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be the eigenspaces of T corresponding to λ1, . . . , λk respectively. For i = 1, . . . , k,
let βi = β ∩ Vi, and ni be the number of elements of βi. Then β is the disjoint
union of β1, . . . , βk, since every vector in β is an eigenvector, and thus belongs to
exactly one of the βi’s. It follows that

(1) n =

k∑
i=1

ni.

If now mi is the geometric multiplicity of λi, and Mi be the algebraic multiplicity
of λi, then

(2) ni ≤ mi ≤Mi for all i = 1, . . . , k.

The first inequality holds since βi is a set of linearly independent vectors in Vi,
where mi = dim(Vi) and ni = number of elements of βi; the second inequality
holds by the first part of our theorem. On the other hnad,

(3)

k∑
i=1

Mi = n

by Lemma 1. From (1), (2) and (3), we conclude that mi = Mi for all i = 1, . . . , k.
This proves that the algebraic and geometric multiplicities are the same for each
eigenvalue of T , and we conclude the proof of the theorem. �

Question 12. Show that the linear map T in Question 11 is diagonalizable using
Theorem 13.


