Math 350 Fall 2011
Notes about Diagonalization and Invariant subspaces

1. DIAGONALIZATION OF A MATRIX

In this section, let A be an n x n matrix with entries in a field F.

Definition 1. The characteristic polynomial of A is by definition the polynomial
f(t) = det(A —tI),

where I is the n X n identity matrix.

It is thus a polynomial of degree n in a single variable ¢ with coefficients in F'.

Question 1. Consider the following 2 x 2 real matrix

1 —4
0o -1 )°
Compute its characteristic polynomial.

Definition 2. ) is said to be an eigenvalue of A if it is a zero of the characteristic
polynomial of A in F.

So A € F is an eigenvalue of A, if and only if det(A — AI) = 0. It then follows
that the nullspace of A — A\ is non-zero; so there exists a non-zero vector v € F™
such that (A — Al)v =0, i.e. Av= .

Definition 3. A wvector v € F™ is said to be an eigenvector of A, if v # 0 and
Av = M for some \ € F.

In fact if v # 0 and Av = Av, then v is said to be an eigenvector of A corre-
sponding to the eigenvalue A. Equivalently, if v # 0, then v is an eigenvector of A
corresponding to A, if and only if v is in the nullspace of A — AI.

Question 2. Find all eigenvalues and eigenvectors of the matriz in Question 1.

Definition 4. A is said to be diagonalizable (over F') if there exists an invertible
matriz P, and a diagonal matriz D, both of which are n X n and have entries in F,
such that

A=PDpP .
If A is diagonalizable, a representation of A in the form PDP~' where P is in-
vertible and D is diagonal, is called a diagonalization of A.

In other words, A is diagonalizable if and only if it is similar to a diagonal matrix
(over F).

Question 3. Show that the matriz in Question 1 over R is diagonalizable over R,
and diagonalize it.

Theorem 1. A is diagonalizable over F, if and only if A has n linearly independent
eigenvectors in F™.
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Proof. Suppose A = PDP~! for some invertible matrix P and a diagonal matrix
D. Then AP = PD, so if vy,...,v, are the columns of P, and \q,...,\, are the
entries on the diagonal of D, then Av; = A\jv; for all ¢ = 1,...,n. In particular,
v1,. .., U, are eigenvectors of A. They are linearly independent since P is invertible.

Conversely, suppose v1,...,v, are linearly independent eigenvectors of A, say
corresponding to eigenvalues Ay,..., A, € F. Let P be the matrix whose i-th row
is v;, and D be the diagonal matrix whose i-th entry on the diagonal is A;. Then
P is invertible, since its columns are linearly independent, and we have AP = PD,
since Av; = \v; for i = 1,2, ..., n. It follows that A = PDP~!, which implies that
A is diagonalizable over F'. O

Definition 5. A set of n linearly independent eigenvectors of A in F™ is said to
be an eigenbasis of F™ associated to A.

The above theorem can now be reformulated as

Theorem 2. A is diagonalizable over F, if and only if there exists an eigenbasis
of F™ associated to A.

Definition 6. The span of all eigenvectors of A corresponding to an eigenvalue A
of A is called the eigenspace of A corresponding to A.

Thus any eigenspace of A is in particular a subspace of F™. In general one
should think about eigenspaces instead of eigenvectors as much as possible, since
eigenspaces are canonical objects associated to a matrix, while eigenvectors are not.

2. DIAGONALIZATION OF A LINEAR MAP

In this and subsequent sections, V' is a vector space over F' of dimension n < oo,
and T: V — V is a linear map from V into itself.

Recall that given any ordered basis a of V', one can find a matrix representation
[T]o of T with respect to . This matrix is an n x n matrix with entries in F', and
if B is a different ordered basis of V, then [Tz and [T, are similar to each other.
Since the determinant of any two similar matrices are the same, we can make the
following definition:

Definition 7. The determinant of a linear map T:V — V is defined to be the
determinant of [T, where o is any ordered basis of V. We denote this by det(T).

This definition is independent of the choice of a. With this we define:

Definition 8. The characteristic polynomial of a linear map T: V — V is defined
to be the polynomial f(t) = det(T — tI), where I: V — V is the identity map.

In other words, the characteristic polynomial of T" is given by

F(t) = det([T]a — 1),



where « is any ordered basis of V and [ is the identity matrix. This is independent
of the choice of a.

Question 4. Let V be the space of real polynomials of degree < 2. It is a vector
space over R. Let T: V — V be the linear map

T(p(x)) =p'(x).
Find the characteristic polynomial of T'.

Definition 9. X is said to be an eigenvalue of T if it is a zero of the characteristic
polynomial of T in F.

So A € F is an eigenvalue of T, if and only if det(T" — AI) = 0. It then follows
that the nullspace of T' — AI is non-zero; so there exists a non-zero vector v € V'
such that! (T — AI)v = 0, i.e. Tv = Av. Conversely, if there is a non-zero vector
v € V such that Tv = Av, then X is an eigenvalue of T.

Definition 10. A vector v € V is said to be an eigenvector of T, if v # 0 and
Tv = Xv for some A € F.

In fact if v # 0 and Twv = Av, then v is said to be an eigenvector of T' corre-
sponding to the eigenvalue A. Equivalently, if v = 0, then v is an eigenvector of T
corresponding to A, if and only if v is in the nullspace of T'— AI.

Question 5. Find all the eigenvalues and eigenvectors of T where T is the linear
map in Question 4.

Definition 11. A linear map T:V — V is said to be diagonalizable, if there exists
an ordered basis « of V' such that the matriz representation [T, of T is a diagonal
matriz.

It follows that such an ordered basis of V' consists only of eigenvectors of T'; in

fact & = {v1,...,v,}, and [T], is a diagonal matrix with entries Ay,..., A\, on the
diagonal, then Tv; = A\;v; for alli = 1,...,n, and thus « consists of eigenvectors of
T.

Conversely, if « is an ordered basis of T' consisting only of eigenvectors of T, say
a = {vy,...,v,}, and Tv; = \u; for all i = 1,...,n where A1,..., A, € F, then
the matrix representation [T'], of T' is a diagonal matrix with entries A1,..., Ay,
and T is diagonalizable. Thus we have proved:

Theorem 3. A linear map T:V — V is diagonalizable, if and only if there exists
a basis of V' that consists only of eigenvectors of T'.

Such a basis is usually called an eigenbasis of V associated to T. Since in a
vector space of dimension n, n vectors form a basis if and only if they are linearly
independent, we have

Theorem 4. A linear map T:V — V is diagonalizable, if and only if there exists
n linearly independent eigenvectors of T, where n = dim(V).

1From now on we write Tw for T'(v) for the sake of brevity.



Question 6. Show that the linear map T in Question 4 is not diagonalizable.

Definition 12. If T:V — V is diagonalizable, then a diagonalization of T is
by definition an ordered eigenbasis of V associated to T, together with the matrix
representation [T, .

In other words, it is a set of n linearly independent eigenvectors of 7', and the
diagonal matrix that consists of their corresponding eigenvalues.

Question 7. Let V be the space of all real polynomials of degree < 1. It is a vector
space over R. Let S: V — V be defined by

S(p(x)) = 2(z = 1)p' ()
for all p(x) € V.. Show that S is diagonalizable, and find a diagonalization of S.

Finally, comparing what we had in these two sections, we have:

Theorem 5. Suppose A is an n X n matriz with entries in F. Then A is diagonal-
izable, if and only if the linear map T: F™ — F™ associated to A is diagonalizable.

We also have:

Definition 13. The span of all eigenvectors of T corresponding to an eigenvalue
A of T is called the eigenspace of T' corresponding to .

Thus any eigenspace of T is in particular a subspace of V. Again in general one
should think about eigenspaces instead of eigenvectors as much as possible when
one considers linear maps.

3. INVARIANT SUBSPACES

Again, in this section, T: V' — V is a linear map from V into itself, where V is
a vector space over a field F', and dim(V) = n < cc.

Definition 14. W is said to be an invariant subspace associated to T if it is a
subspace of V', and T(w) € W for all w € W.

Sometimes we also say that W is a T-invariant subspace of V.

Question 8. For example, let T: R? — R? be given by

r(5)-( )0

Show that the x-axis is a T-invariant subspace of R?, while the y-axis is not.

If T:V — V is a linear map, then the following are all trivial T-invariant
subspaces of V: {0}, V, the nullspace of T, and the range of T. Also, any eigenspace
of T, i.e. the nullspace of T" — AI for any A, is a T-invariant subspace of V; so is
the range of T'— AI for any A.



Definition 15. IfT:V — V is linear and W is a T-invariant subspace of V', one
can define the restriction of T to W by
Ty : W =W
Ty (w) =T(w) for allw e W.

The restriction of T to W is a linear map from W to W. One important fact is:

Theorem 6. If W is a T-invariant subspace of V', then the characteristic polyno-
mial of T|y, divides the characteristic polynomial of T'; more precisely, if f(t) and
g(t) are the characteristic polynomials of T and Ty, respectively, then there is a
polynomial q(t) with coefficients in F' such that

@) =g)q(t).

Proof. Suppose a = {v1,...,vn} is an ordered basis of W. Extend it to an ordered
basis § = {v1,...,v,} of V. Then the matrix representation [I']g of T is of the

form
A B
0 C

where A is an m X m matrix, B is an m X (n — m) matrix, C is an (n — m) x
(n — m) matrix and 0 is the (n — m) X m zero matrix. In fact A is then the
matrix representation [T'|;|o. It follows that if f(t) and g(t) are the characteristic
polynomials of T" and T'|y;, respectively, then

f(t)—det(<‘g g)ﬂ) —det< AB” cif >

f(t) = det(A —tI)det(C —tI) = g(¢t) det(C — tI),
and letting ¢(¢) = det(C' — tI) we have the claim. O

SO

Question 9. For example, if W is the z-axis, and T is the linear map in Ques-
tion 8, find the characteristic polynomial of T|y,, and show that it divides the
characteristic polynomial of T .

One important example of construction of invariant subspaces is the following.
Suppose T': V. — V is a linear map, where V is a finite dimensional vector space
over a field F'. Suppose v € V, v # 0. Let k be the largest positive integer such that
{v,Tv,T?v,...,T* v} are linearly independent?. Such k exists since V is finite
dimensional. Let W be the span of {v,T,...,T*"'v}. Then W is a subspace of
V', and we claim that W is T-invariant: in fact if w € W, then

w=agv+aTv+- -+ ak,lTk_lv
for some scalars ag,...,ar_1 € F, so
Tw = agTv+ ayT?v+ -+ ak,lTkv.
2From now on, we write T for the composition of i copies of 7. In other words, T2v is a
shorthand of T(T), T3v is a shorthand for T(T(Tv)), etc. More generally, if f(t) is a polynomial
in a single variable ¢, say f(t) = ao+ait+ -+ amt™, and T: V — V is a linear map, then f(T")

is by definition a linear map from V to V such that f(T)v = agv + a1Tv + - -+ + amT™v for all
veV.
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But T%v is a linear combination of v, T, ..., T* v, since {v, Tv,...,TF 1v, T*v}
is linearly dependent. Thus we have Tw € W, which proves that W is T-invariant.

Now {v,Twv,...,T*"1v} is a basis of W (why?), so dim(W) = k. If
Tky = —bov — 01T — -+ — bk,lTk_lv
for some scalars by, ...,bx—1, then the characteristic polynomial of T, can be
shown to be
g(t) = (=1)%(bg + brt + - + bp_1t" 1 +tF)
(check!), so in particular g(T)(v) = (=1)¥(bgv+b1Tv+- - -+ b1 T+ Lo +Tkv) = 0.

Now if f(t) is the characteristic polynomial of T', then ¢(¢t) divides f(¢), i.e. there
exists a polynomial ¢(t) with coefficients in F' such that f(t) = g(t)q(¢t). It follows
that f(T)(v) = ¢(T)g(T)v = q(T)(0) = 0. Since this is true for all v € V, we see
that f(T') is the zero map from V to V. This proves:

Theorem 7 (Cayley-Hamilton). If V is a finite dimensional vector space over
a field F, T:V — V is a linear map, and f(t) is the characteristic polynomial
of T, then the linear map f(T): V — V is the zero map, i.e. T ‘satisfies’ the
characteristic polynomial of T .

Corollary 8. If A is an n X n matriz with entries in a field F, and f(t) is the
characteristic polynomial of A, then f(A) is the zero matriz.

4. CRITERIA ABOUT DIAGONALIZABILITY

Again in this section, V is a vector space over a field F' of dimension n < oo,
and T: V — V is a linear map from V into itself. We state some important criteria
about the diagonalizability of T.

Theorem 9. Ifvy,...,vx € V are eigenvectors of T' corresponding to the eigenval-
ues A, ..., A\p € F, and the eigenvalues A1, ..., \; are pairwise distinct, then the
set of vectors {vy,..., v} is linearly independent.

Proof. The proof is by induction on k. The claim is trivial if £ = 1. Now when
k =2, i.e. if vy, vy are eigenvectors of T' corresponding to eigenvalues A\; and Ao,
with A\; # A2, then suppose
a1v1 + a2v2 = 0
for some scalars aj, as. Applying T'— A1 to both sides, we get
al()\l - /\2)111 =0,

which implies a; = 0. Hence as = 0. So the case k = 2 is proved.

More generally, suppose the claim is true for a certain value of k. Suppose

one has k + 1 eigenvectors of T', namely v, ..., v 1, corresponding to eigenvalues
A1, .-y Ak+1, such that no two of the \;’s are equal. Then if ay,..., a1 are scalars
such that

a1vy + -+ agp1Vk41 = 0,



by applying T' — Ax+11 to both sides, we get

al(/\l — >\k+1)1)1 + -+ ak()\k — )\k+1)vk = 0.

By induction hypothesis, {vy,...,v;} are linearly independent, so
ar(M — Apg1) = a2(da = Apg1) = -+ = ap( A — Apy1) = 0.
Since A1, ..., A; are all different from Ay, this implies
@ = =ap =0,
so ax+1 = 0 as well, and that completes the induction. ([l

Corollary 10. IfT: V — V has n distinct eigenvalues over F', where n = dim(V),
then T is diagonalizable.

Corollary 11. Suppose Vi, ..., Vi are eigenspaces of T corresponding to eigenval-
ues A, ..., g, and the eigenvalues A1, ..., g are pairuise distinct.
(a) If vy € Vi, ..., vy € Vi satisfies

v+ -+ =0,
then
Ul:...:vk:()_

(b) If B1,...,Bk are linearly independent subsets of Vi,..., Vi respectively, then
BrU B U---U B is a linearly independent subset of V.

These are easy corollaries of the previous theorem. Their proofs are left as
exercises.

Next is a little piece of terminology from algebra:

Definition 16. If p(t) is a polynomial of one variable with coefficients in a field
F and that has degree n, then we say that p(t) splits over F if there are scalars
c,ai,...,an € F such that

p(t) =c(t —a1)({t —az)...(t —ap).

In other words, p(t) is said to split over F' if and only if p(¢) can be completely
factorized into a product of linear factors with coefficients in F'.

uestion . ow a € polynomuia —|— splits over , out not over .
Question 10. Show that the pol jal t2 + 1 split C, but not R

Theorem 12. Suppose V is a finite dimensional vector space over F', and a linear
map T:V — V is diagonalizable. Then the characteristic polynomial of T splits
over F'.

Definition 17. If )\ is an eigenvalue of a linear map T:V — V, its algebraic
multiplicity is the number of times the factor (t — \) appears in the factorization of
the characteristic polynomial of T, and its geometric multiplicity is the dimension
of the eigenspace corresponding to .



Question 11. Suppose V is the vector space of real polynomials of degree < 2 on
R. Let T: V — V be the linear map defined by

T(p(x)) = 2(z — p' () + (x — 1)°p" ().

Find the eigenvalues of T, and their algebraic and geometric multiplicities.

From Theorem 12, we have:

Lemma 1. Suppose T: V — V is a linear map and dim(V) = n. If T is diagonal-
izable, then the sum of the algebraic multiplicities of the eigenvalues of T is equal
to n.

This is because if T is diagonalizable over F', then by Theorem 12, the char-
acteristic polynomial of T splits, meaning that the characteristic polynomial of T
has exactly n zeroes (counting multiplicities) in F. Thus the sum of the algebraic
multiplicities of the eigenvalues of T is n, as desired.

The main result of this section is:

Theorem 13. The algebraic multiplicity of any eigenvalue of T is bigger than or
equal to its geometric multiplicity. Furthermore, T is diagonalizable, if and only if
equality holds for every eigenvalue of T, i.e. if and only if the algebraic multiplicity
of every eigenvalue of T is equal to its geometric multiplicity.

Proof. If X is an eigenvalue of T and M, m are its algebraic multiplicity and geo-
metric multiplicities respectively, we first show m < M. To do so, let W be the
eigenspace of T' corresponding to A, and T'|y;, be the restriction of T' to W. Let
also f(t) be the characteristic polynomial of T, and ¢(t) be the characteristic poly-
nomial of T'|};,. Then by Theorem 6, g(t) divides f(t). But dim(W) = m, and by
computing explicitly the characteristic polynomial of T'|y;,, we get

gt) = (A —t)™.
Now M is the number of factors of (A — t) that arises in the factorization of f(¢).
So from (A —t)™ divides f(¢), we conclude that m < M, which is the desired claim.

Next, suppose the algebraic multiplicity of every eigenvalue of T is equal to its
geometric multiplicity. Then let A1,..., A\x be a listing of the distinct eigenvalues
of T, and My, ..., M} be their corresponding algebraic or geometric multiplicities.
By Lemma 1, we get

M1+M2++Mk:n
Now let Vi, ..., Vi be the eigenspaces of T corresponding to A1, ..., Ax. Then their
dimensions are M, ..., My respectively. Let Si,...,0r be a basis of Vi,...,Vj
respectively. Then S := 1 U--- U B is linearly independent by Corollary 11(b).
Furthermore, 8 has My + --- + My = n vectors, and all elements of 5 are all
eigenvectors of T. Thus T has n linearly independent eigenvectors, which shows
that T' is diagonalizable.

Now suppose T is diagonalizable. Then there exists an eigenbasis 3 of V' associ-
ated to T'. Let A1, ..., \x be a listing of the distinct eigenvalues of T, and V7, ..., Vg
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be the eigenspaces of T' corresponding to A1, ..., A\; respectively. For i =1,... k,
let B; = B NV;, and n; be the number of elements of 3;. Then S is the disjoint
union of 81,..., Bk, since every vector in 3 is an eigenvector, and thus belongs to
exactly one of the 8;’s. It follows that

k
(1) n= Z n;.
i=1
If now m; is the geometric multiplicity of A\;, and M; be the algebraic multiplicity
of \;, then

The first inequality holds since (; is a set of linearly independent vectors in V,
where m; = dim(V;) and n; = number of elements of §;; the second inequality
holds by the first part of our theorem. On the other hnad,

k
(3) > Mj=n
i=1

by Lemma 1. From (1), (2) and (3), we conclude that m; = M; foralli=1,... k.
This proves that the algebraic and geometric multiplicities are the same for each
eigenvalue of T, and we conclude the proof of the theorem. ([

Question 12. Show that the linear map T in Question 11 is diagonalizable using
Theorem 13.



