
Math 350 Fall 2011
Notes about the interplay of matrices with linear maps

One of the themes of the last two lectures was about the correspondence between
linear maps (between finite dimensional vector spaces) and matrices. In the follow-
ing we describe how some terminologies and results about linear maps transfer to
the study of matrices.

First, suppose A is a m×n matrix with real entries1. Then one can associate to
A a linear map T : Rn → Rm, via the equation

T (x) = Ax for all x ∈ Rn.

(In other words2, one thinks of x ∈ Rn as a column vector, and let T (x) be the
column vector obtained by multiplying the column vector x by the matrix A.) The
range of A is now defined to be the range of this linear map T ; it is thus a subspace
of Rm. The nullspace of A is now by definition the nullspace of T ; it is thus a
subspace of Rn.

On the other hand, given an m × n real matrix A, there are two other spaces
that you may be familiar with. One is called the column space of A; this is by
definition the vector space of all linear combinations of columns of A. In other
words, this is the span of the columns of A, and it is a subspace of Rm. Another is
called the solution space of the equation Ax = 0; in fact, if x is the column vector
with n components x1, . . . , xn, then Ax = 0 is a system of m linear equations in
n unknowns x1, . . . , xn, where A is called the coefficient matrix of this system of
linear equations. The space of solutions to this equation is a natural subspace of
Rn associated to A. One can see, almost by definition, that the nullspace of A is
precisely the space of solutions to the equation Ax = 0; on the other hand, the
range of A is actually the same as the column space of A. This is because any
vector in the range of A is of the form Ax for some column vector x. But Ax is
just a linear combination of the columns of A, and any linear combination of the
columns of A is equal to Ax for some column vector x. In fact, if v1, . . . , vn are the

columns of A, and if x =


x1

x2

...
xn

, then

Ax = x1v1 + · · ·+ xnvn.

Thus the range of A is equal to the column space of A, as desired.

Question 1. Let

A =

 0 1 1
2 0 4
2 1 5

 .

1In fact, our discussion below goes through even if the field R is replaced by a general field F .
2Alternatively, if one denotes the standard ordered basis on Rn and Rm by β and γ respectively,

then this T is the unique linear map from Rn to Rm such that the matrix representation [T ]γβ of

T with respect to β and γ is equal to A.
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Find the range of A and the nullspace of A. (The latter amounts to solving the
equation Ax = 0. Why?)

Now we define the rank of a matrix A to be the rank of the linear map T we
associated to A. Hence the rank of a matrix A is the dimension of the range of
A, or the dimension of the column space of A. On the other hand, we define the
nullity of A to be the nullity of the linear map T . Hence the nullity of A is the
dimension of the space of solutions to the equation Ax = 0.

Question 2. Find the rank and the nullity of the matrix A in Question 1.

We observe that if A is a m×n matrix with columns v1, . . . , vn, then the following
are equivalent:

(a) The vectors v1, . . . , vn are linearly independent;
(b) The equation Ax = 0 has only the trivial solution x = 0;
(c) The nullspace of A is {0};
(d) The nullity of A is zero;
(e) The linear map associated to A is injective.

In fact, if x is a column vector with components x1, . . . , xn, then the equation
Ax = 0 is equivalent to the condition that x1v1 + · · · + xnvn = 0. The latter
equation has only the trivial solution x = 0 if and only if v1, . . . , vn are linearly
independent. Thus (a) and (b) are equivalent. The equivalence of (b), (c) and (d)
is an easy consequence of the definitions, and the equivalence of (d) and (e) was a
theorem we have proved.

On the other hand, if A is a m× n matrix, then the following are equivalent:

(i) The columns of A span Rm;
(ii) The column space of A is the whole Rm;
(iii) The range of A is the whole Rm;
(iv) The linear map associated to A is surjective;
(v) rank(A) = m

The equivalence of (i) through (iv) is almost tautological. We just note that (iii)
and (v) are equivalent since the range of A is always a subspace of Rm.

The rank-nullity theorem for linear maps now says for any m× n matrix A, one
has

rank(A) + nullity(A) = n.

In particular, if A is an m × n matrix, then the solution space of the equation
Ax = 0 has dimension n − rank(A). If now m = n, i.e. if A is a square n × n
matrix, then the rank of A is n, if and only if the nullity of A is zero. Thus together
with our above discussion, we see that if A is an n × n matrix, then the following
are equivalent:

(1) The columns of A are linearly independent;
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(2) The equation Ax = 0 has only the trivial solution x = 0;
(3) The nullity of A is zero;
(4) The rank of A is n;
(5) The range of A is the whole Rn;
(6) The columns of A span Rn;
(7) The linear map associated to A is injective;
(8) The linear map associated to A is surjective.

In fact we have already seen a proof of (1) ⇔ (6) before. This is a second proof of
the same fact, via the rank-nullity theorem. It is also very easy to see that any of
the above conditions is equivalent to any of the following:

(9) The columns of A is a basis of Rn;
(10) The linear map associated to A is bijective;
(11) The linear map associated to A is an isomorphism.

But (11) is also equivalent to the following:

(12) A is an invertible matrix.

(Recall that a matrix A is said to be invertible if there exists another matrix B
such that AB = BA = I where I is the identity matrix.)

In fact, more generally, we have:

Theorem 1. Suppose T : V → W is a linear map between two finite dimensional
vector spaces, and β, γ are ordered bases of V and W respectively. Then T is an
isomorphism, if and only if the matrix representation [T ]γβ is an invertible matrix.

Proof. Suppose A = [T ]γβ is invertible, with inverse B. Then there is a linear map
S : W → V such that [S]βγ = B. One can check that S ◦ T is the identity map on
V ; this is because [S ◦ T ]ββ = [S]βγ [T ]γβ = BA = I where I is the identity matrix.
Similarly, one can check that T ◦ S is the identity map on W . Thus T : V → W
is invertible as a map from V to W . It follows that T is bijective, and hence an
isomorphism.

Conversely, suppose T is an isomorphism. Then T : V → W is bijective, so there
is a map S : W → V such that S ◦ T is the identity map on V , and T ◦ S is the
identity map on W . One can check that this map S is linear. Thus it has a matrix
representation, say B = [S]βγ . Now if A = [T ]γβ , we claim AB = I, the identity
matrix. This is because AB = [T ]γβ [S]βγ = [T ◦S]γγ = [IdW ]γγ = I, where IdW is the
identity map on W . Similarly, one has BA = I. Thus A is invertible, and in fact
A−1 = B. �

At this point, we take the chance to point out that the system of linear equations
we considered above, namely Ax = 0, is usually called a homogeneous system of
linear equations. The term homogeneous refers to that the right hand side of this
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system is zero. On the other hand, one can also consider a more general system of
linear equations, namely Ax = b; if b 6= 0 then one says this is an inhomogeneous
system of linear equations. Sometimes we also call Ax = 0 the homogeneous system
of linear equations associated to the equation Ax = b.

To relate to what we have discussed above, given an m × n matrix A and a
column vector b ∈ Rm, we say that the system Ax = b is solvable, if and only if
there is some column vector x ∈ Rn that solves this equation. This is true if and
only if b is in the column space of A. If the system Ax = b is solvable, then the set
of all solutions is equal to the set

{x0 + v : v ∈ nullspace(A)}
where x0 is any solution of the equation Ax = b. (Why? Prove this!) As a result,
the set of all solutions of the equation Ax = b is a translate of a vector space
(namely the nullspace of A) by a vector (namely x0); we sometimes call such a set
an affine space.

Question 3. Let

A =

 0 1 1
2 0 4
2 1 5

 , b1 =

 1
2
3

 , b2 =

 1
2
4

 .

(This is the same matrix A as in Question 1.)

(a) Find all solutions to the system of equations Ax = b1.
(b) Find all solutions to the system of equations Ax = b2.
(c) Is the system of equations Ax = b1 solvable?
(d) Is the system of equations Ax = b2 solvable?
(e) (i) Find all column vectors b such that the equation Ax = b is solvable.

(ii) Compare your answer to the range of A that you found in Question 1.
How does this relate to the column space of A?

(f) (i) Show that x0 :=

 1
1
0

 is a solution to the equation Ax = b1.

(ii) Verify that all solutions to the equation Ax = b1 (which you found in part
(a)) is of the form x0 + v, where v is an element of the nullspace of A.
(The nullspace of A was found in Question 1.)

Next, if A happens to be a square matrix, say A is n× n, then (1) through (12)
above are all equivalent to any of the following:

(13) The equation Ax = b is solvable for any column vector b ∈ Rn;
(14) The equation Ax = b has exactly one solution for any column vector b ∈ Rn.

In fact, if (12) holds, i.e. if A is invertible, then for any b ∈ Rn, the equation Ax = b
is equivalent to that x = A−1b, so the equation Ax = b has exactly one solution for
any b ∈ Rn, and (14) follows. On the other hand, if (14) holds, then so does (13),
but if (13) holds, then any b ∈ Rn is in the range of A, so (5) holds. This proves
that (1) through (14) are all equivalent.
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The solution of systems of linear equations is usually carried out through Gauss-
ian elimination (or row operations). A row operation is one of the following:

(I) Interchanging two rows of a matrix;
(II) Multiplying a row of a matrix by a non-zero scalar;

(III) Subtracting from a row of a matrix a multiple of another row.

By applying these row operations successively to the augmented matrix of a system
of linear equations, one can always reduce it to the row-echelon form, i.e. an upper
triangular matrix so that the entries on the diagonal is a sequence of 1’s followed by
a sequence of 0’s. One can then solve the system of linear equations by backward-
substitution.

On the other hand, one of the things we’d like to point out here is that row
operations can be carried out by matrix multiplications. For example, if A is a
3× 3 matrix, and if you want to interchange the first two rows of the matrix, then
you just need to multiply, on the left-hand side of A, the matrix 0 1 0

1 0 0
0 0 1

 .

In fact if E0 is the above matrix, then E0A is precisely the matrix that you would
obtain from A by interchanging the first two rows of A. More generally, if A is
a m × n matrix, then for any row operation you want to apply to A, there is a
m × m square matrix E such that EA is the matrix that you would obtain by
applying the desired row operation to A. The set of matrices E that arise this way
is called the set of all elementary matrices; this is precisely the set of all matrices
that one can obtain by applying the row operations to the m×m identity matrix.
Any elementary matrix is invertible; this is because you can always undo any row
operation you have done on A. There is also a notion called column operations; if A
is an m×n matrix, then the column operations on A are precisely those operations
on A that can be achieved by multiplying on the right-hand side of A an elementary
matrix of size n× n.

You should have learned from a previous course that any m×n matrix A can be
brought into the a diagonal matrix D, where the diagonal entries are a sequence of
1’s followed by a sequence of 0’s, by applying row and column operations. For the
lack of terminology, let’s temporarily call D the diagonal matrix associated to A.
Thus from the above discussion, D = PAQ for some invertible matrices P and Q.

Now it is an easy theorem that if A is an m× n matrix, P is a m×m invertible
matrix, and Q is a n × n invertible matrix, then the range of A is the same as
the range of AQ, and the rank of PA is the same as the rank of A. Combining
these two facts, one realizes that under the same assumptions on A, P and Q, we
have rank(A) = rank(PAQ). So the rank of a matrix A is equal to the rank of the
diagonal matrix associated to A.

On the other hand, if A is any m×n matrix, then the diagonal matrix associated
to At is equal to the transpose of the diagonal matrix associated of A. Since the
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rank of the diagonal matrix associated to A is the same as the rank of diagonal
matrix associated to At (in fact the diagonal matrices are transposes of each other),
one has

rank(A) = rank(At)
for any m× n matrix A.

It follows that if A is a square matrix, say A is n × n, then the nullity of A is
the same as the nullity of At (since both are equal to n − r where r = rank(A) =
rank(At)). In particular, if A is a square matrix, and T , T t are the linear maps
associated to A and At respectively, then

T is injective ⇔ T t is injective ⇔ T t is surjective ⇔ T is surjective.

(In fact, the first two statements are equivalent to that the nullity of A = 0, and
the last two statements are equivalent to the fact that rank(A) = n, whereas for
n× n matrices, nullity(A) = 0 if and only if rank(A) = n.)

Incidentally, one should remember that the analog of this last fact is not true,
if T is a linear map from an infinite dimensional vector space into itself. This last
statement is very much a finite dimensional phenomenon.

Finally, you should remember from a previous course that one can define the
determinant of any n×n matrix A. If A is an n×n matrix, and B is the transpose
of its cofactor matrix, then AB = det(A)I where I is the identity matrix. We claim
that if det(A) 6= 0, then A is invertible. In fact if det(A) 6= 0, then first we claim
that the equation Bx = 0 has only the trivial solution x = 0; this is because if
det(A) 6= 0 and Bx = 0, then x = Ix = 1

det(A)A(Bx) = 1
det(A)A(0) = 0. It then

follows from our previous discussion that B is invertible, so BA = BABB−1 =
B(det(A)I)B−1 = det(A)I as well. It follows that C := 1

det(A)B satisfies CA =
AC = I. So A is invertible.

On the other hand, if A were invertible, say C = A−1, then AC = I, where
I is the identity matrix, and thus det(A) det(C) = 1, from which one sees that
det(A) 6= 0.

So now if A is an n × n matrix, we have one last statement, that is equivalent
to all of (1) through (14) above:

(15) det(A) 6= 0


