
Math 252 — Fall 2002
Some Remarks on Phase Planes

Background.
A technique which is often very useful in order to analyze the phase plane behavior of a two-dimensional

autonomous system
dx

dt
= f (x, y)

dy

dt
= g(x, y)

is to attempt to understand the graphs of solutions
(

x(t), y(t)
)

as the level sets of some functionh(x, y).

Some Examples. We start with some easy examples.

Example 1. For example, take
dx

dt
= −y

dy

dt
= x

(that is, f (x, y) = −y andg(x, y) = x). If we could solve fort as a function ofx, by inverting the function
x(t), and substitute the expression that we obtain intoy(t), we would end up with an expressiony(x) for
the y-coordinate in terms of thex coordinate, eliminatingt . This cannot be done in general, but it suggests
that we may want to look atdy/dx. Formally (or, more precisely, using the chain rule), we have that

dy

dx
= dy/dt

dx/dt
= x

−y

which is a differential equation fory as a variable dependent onx. This equation is separable:

∫
dy

y
=
∫
−dx

x

so we obtain, taking antiderivatives,
y2

2
= −x2

2
+ c

wherec is an undetermined constant, and sincec must be nonnegative, we can writec = r 2. In conclusion,
the solutions

(
x(t), y(t)

)
all lie in the circlesx2+ y2 = r 2 of different radii and centered at zero.Observe

that we havenot solved the differential equation, since we did determine the forms ofx andy as functions of
t (which, as a matter of fact, are trigonometric functionsx = r cost , y = r sint that draw circles at constant
unit speed in the counterclockwise direction). What we have done is just to find curves (the above-mentioned
circles) which contain all solutions. Even though this is less interesting (perhaps) than the actual solutions,
it is still very interesting. We know what the general phase plane picture looks like.
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Example 2. Another example is this:
dx

dt
= y5ex

dy

dt
= x5ex.

Here,dy/dx = x5/y5 so we get again a separable equation, and we see that the solutions all stay in the
curves

x6− y6 = c.

Example 3. More interesting is the general case of predator-prey equations:

dx

dt
= ax− bxy

dy

dt
= −cy+ dxy

wherea, b, c, d are all positive constants. Then

dy

dx
= y(−c+ dx)

x(a− by)

so ∫ (
a

y
− b

)
dy=

∫ (
− c

x
+ d

)
dx

and from here we conclude that the solutions all stay in the sets

a ln(y)− by+ c ln(x)− dx = k

for various values of the constantk. It is not obvious what these sets look like, but if you graph the level sets
of the function

h(x, y) = a ln(y)− by+ c ln(x)− dx

you’ll see that the level sets look like the orbits of the predator-prey system shown, for the special values
a = 2, b = 1.2, c = 1, andd = 0.9 in Figure 2.5 on page 152 of the (second edition of the) textbook, or as
shown in theMapleplot below
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using the valuesa = b = 6 andc = d = 2. The initial values for these three curves were(1, 1.25), (0.5, 1),
and(1,1, 5).

(Of course, the scales will be different for different values of the constants, but the picture will look the
same, in general terms.) This argument is used to prove that predator-prey systems always lead to periodic
orbits, no matter what the coefficients of the equation are.
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Homework. In each of the following problems, a system

dx

dt
= f (x, y)

dy

dt
= g(x, y)

is given. Solve the equation
dy

dx
= g(x, y)

f (x, y)

and use the information to sketch what the orbits of the original equation should look like.

Exercise 1
dx

dt
= y(1+ x2+ y2)

dy

dt
= x(1+ x2+ y2)

Exercise 2
dx

dt
= 4y(1+ x2+ y2)

dy

dt
= dy

dt
= −x(1+ x2+ y2)

Exercise 3
dx

dt
= y3ex+y

dy

dt
= −x3ex+y

Exercise 4
dx

dt
= y2

dy

dt
= (2x + 1)y2

Exercise 5
dx

dt
= exy cos(x)

dy

dt
= exy
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