Math 252 — Fall 2002
Introduction to Matrix Exponentials

Generalities. A system of autonomous linear differential equations can be written as

dy AY

dt

where A is ann by n matrix andY = Y (t) is a vector listing then dependent variables. (In most of what

we’ll do, we taken = 2, since we study mainly systems of 2 equations, but the theory is the samerfgr all
If we were dealing with just one linear equation

/

y =ay
then the general solution of the equation woula#e It turns out thaglso for vector equations the solution
looks like this, provided that we interpret what we mean &§" when A is a matrix instead of just a scalar.

How to defineet? The most obvious procedure is to take the power series which defines the exponential,
which as you surely remember from Calculus is
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and just formally plug-ik = At. (The answer should be a matrix, so we have to think of the term “1” as
the identity matrix.) In summary, waefine
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where we understand the series as defining a series for each coefficient. One may prove that:

e t+s) — eAleASfor alis, t . 1)
and therefore, since (obviouslg}® = I, usings = —t gives
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e At _ (eAt> 2)

(which is the matrix version acd* = 1/€*). We now prove that this matrix exponential has the following
property:

= At = eAA (3)

for everyt.



Proof. Let us differentiate the series term by term:
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and a similar proof, factoring\ on the right instead of to the left, gives the equality between the derivative
ande”'A. (Small print: the differentiation term-by-term can be justified using facts about term by term
differentiation of power series inside their domain of convergence.) The propértis the fundamental
property of exponentials of matrices. It provides us immediately with this corollary:

I dy . .
The initial value problema = AY, Y(0) = Yo has the unique solutio¥(t) = eAlYp.

We can, indeed, verify that the formu¥at) = Yy defines a solution of the IVP:

dy@t) deftyy de®
dt ~  dt  dt

tYo - (AeAt) Yo = A(eAtY()) — AY().

(That it is the unique, i.e., the only, solution is proved as follows: if there were another sali(tipof the
same VP, then we could &V (t) = Y(t) — Z(t) and notice tha®W’ =Y’ — Z' = A(Y — Z) = AW, and
W(0) = Y(0) — Z(0) = 0. LettingV (t) = e~ A'W(t), and applying the product rule, we have that

V = —Ae AW e AW = e AAW + e AAW =0

so thatV must be constant. Sindé(0) = W(0) = 0, we have that/ must be identically zero. Therefore
W(t) = etV (1) is also identically zero, which becaugé= Y — Z, means that the functionsandz are
one and the same, which is what we claimed.)

Although we started by declaring to be a vector, the equatioff = AY makes sense as long ¥s
can be multiplied on the left by, i.e., whenevelf is a matrix withn rows (and any number of columns).
In particular,e”! itself satisfies this equation. The result giving uniqueness of solutions of initial value
problems applies to matrices since each column satisfies the equation and has the corresponding column of
the initial data as its initial value. The value@f! att = 0 is then by n identity matrix. This initial value
problem characterize=. Verification of these properties is an excellent check of a calculatief'ofThis
plays an important role in othewtesdescribing matrix exponentials containing trigonometric functions.

So we have, in theory, solved the general linear differential equation. A potential problem is, however,
that it is not always easy to calculaé!.

Some Examples. We start with this example:
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We calculate the series by just multiplyi#gby t:

t O
a= (s 8)
and now calculating the powers 8t. Notice that, becausAt is a diagonal matrix, its powers are very easy

to compute: we just take the powers of the diagonal enfrigay? if you don’t understandgtop and think
it over right now) So, we get
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and, just adding coordinate-wise, we obtain:
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which gives us, finally, the conclusion that

t
At e 0
e = ( 0 eZt) .
So, in this very special case we obtained the exponential by just taking the exponentials of the diagonal
elements and leaving the off-diagonal elements zero (observe that we did not end up with exponentials of
the non-diagonal entries, sine® = 1, not 0).
In general, computing an exponential is a little more difficult than this, and it is not enough to just take

exponentials of coefficients. Sometimes things that seem surprising (the first time that you see them) may
happen. Let us take this example now:
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To start the calculation of the series, we multighyby t:

0 t
ne(5 )

and again calculate the powersAf. This is a little harder than in the first example, but not too hard:
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and so on. We won't compute more, because by now you surely have recognized the pgtieth We
add these up (not forgetting the factorials, of course):

a_ (10 0 t)\,1/-t2 o0 1/0 -3\ 1/t* 0\
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and, just adding each coordinate, we obtain:
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which gives us, finally, the conclusion that
( 0 1>t
-1 0 At cost sint
e =et = . .
(— sint cost)

It is remarkable that trigonometric functions have appeared. Perhaps we made a mistake? How could we
make sure? Well, let usheckthat property(3) holds (we’ll check only the first equality, you can check the
second one). We need to test that

d / cost sint cost sint
dt (— sint cost> =A < —sint cost) ‘ ©
Since
d (sint) = cost, and d (cost) = —sint
dt N ’ dt N ’

d (cost sint) _ (—sint cost
dt \ —sint cost / — \ —cost —sint
and, on the other hand, multiplying matrices:
0 1 cost sint) [ —sint cost
-1 0/)\ —sint cost) \ —cost -—sint

so we have verified the equalityp) .
As a last example, let us take this matrix:
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we know that

Again we start by writing



and calculating the powers éft. It is easy to see that the powers are:
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since this is obviously true fdt = 1 and, recursively, we have
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To summarize, we have worked out three examples:

e The first example(4) is a diagonal matrix, and we found that its exponential is obtained by taking
exponentials of the diagonal entries.
e The second examplé€5) gave us an exponential matrix that was expressed in terms of trigonometric

functions. Notice that this matrix has imaginary eigenvalues equadmal—i, wherei = /—1.

e Thelastexampl€?7) gave us an exponential matrix which had a nonzero function i(ltH®-position.
Notice that this nonzero function wastjust the exponential of the,, 2)-position in the original matrix.
That exponential would give us @hterm. Instead, we got a more complicatetiterm.

In a sense, these are all the possibilities. Exponentials of all two by two matrices can be obtained
using functions of the forne®!, te®!, and trigonometric functions (possibly multiplied §'). Indeed,
exponentials of any size matrices, not just 2 by 2, can be expressed using just polynomial combingtions of
scalar exponentials, and trigonometric functions. We will not quite prove this fact here; you should be able
to find the details in any linear algebra book.

Calculating exponentials using power series is OK for very simple examples, and important to do a
few times, so that you understand what this all means. But in practice, one uses very different methods
for computing matrix exponentials. (Remember how you first saw the definition of derivative using limits
of incremental quotients, and computed some derivatives in this way, but soon learned how to use “the
Calculus” to calculate derivatives of complicated expressions using the multiplication rule, chain rule, and
soon.)

Computing Matrix Exponentials.  We wish to calculatee™. The key concept for simplifying the
computation of matrix exponentials is thatrohtrix similarity. Suppose that we have found two matrices,
A andS, whereSis invertible, such that this formula holds:

A=SAS? (8
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(if (8) holds, one says tha& and A are similar matrices). Then, we claim, it is true that also:
eM=setst 9
for all t. Therefore, if the matrixA is one for whiche®! is easy to find (for example, if it is a diagonal
matrix), we can then multiply b and S~ to gete”. To see why(9) is a consequence aB) , we just
notice thatAt = S(At)S~! and we have the following “telescopic” property for powers:
(ADK = (S(At)S’1)<S(At)S’1) . (S(At)S’l) — s(at)ks?
since the terms may be regrouped so that all the in-between®di&cancel out. Therefore,
1 1 1
eM =1+ At+ E(At)2+ é(At)3+ et F(At)kJr e
1 1 1
=1+SAHS T+ 5S.(At)zsrl + éS(At)?’S_l ot ES(At)kS_l SR
1 2,1 .3 1 K 1
=S|I+ At+S(AD + Z(AD  + oo+ 2 (AD 4| S
= SeMts?

as we claimed.
The basic theorem is this one:

Theorem. For every n by n matrix A with entries in the complex numbers, one can find an
invertible matrix S, and an upper triangular matrix A such that (8) holds.

Remember that an upper triangular matrix is one that has the following form:

Al % * .. * *
0 A2 % -+ % *
0O 0 Xxp --- * *
0O 0 O .-+ Apn1 =
o oOoO o -.. 0 An

where the stars are any numbers. The numbers. ., A, turn out to be the eigenvalues Af

There are two reasons that this theorem is interesting. First, it provides a way to compute exponentials,
because it is not difficult to find exponentials of upper triangular matrices (the exampis actually quite
typical) and second because it has important theoretical consequences.

Although we don’t need more than the theorem stated above, there are two stronger theorems that you
may meet elsewhere. One is the “Jordan canonical form” theorem, which provides a m#étax is not
only upper triangular but which has an even more special structure. Jordan canonical forms are theoretically
important because they are essentially unique (that is what “canonical” means in this context). Hence, the
Jordan form allows you to determine whether or not two matrices are similar. However, it is not very useful
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from a computational point of view, because they are what is known in numerical analysis as “numerically
unstable”, meaning that small perturbationsfotan give one totally different Jordan forms. A second
strengthening is the “Schur unitary triangularization theorem” which says that one can pick the$ratrix
beunitary. (A unitary matrix is a matrix with entries in the complex numbers whose inverse is the complex
conjugate of its transpose. For matricewith real entries, then we recognize it as@thogonalmatrix.
For matrices with complex entries, unitary matrices turn out to be more useful than other generalization
of orthogonal matrices that one may propose.) Schur’s theorem is extremely useful in practice, and is
implemented in many numerical algorithms.

We do not prove the theorem here in general, but only show it fer2; the general case can be proved
in much the same way, by means of a recursive process.

We start the proof by remembering that every matrix has at least one eigenvalue, let us, eadtlian
associate eigenvectar, That is to sayy is a vectodifferent from zero, and

Av = \v. (10

If you stumble on a numbex and a vectow that you believe to an eigenvalue and its eigenvector, you
shouldimmediatelysee if (10) is satisfied, since that is an easy calculation. Numerical methods for finding
eigenvalues and eigenvectors take this approach.
For theoretical purposes, it is useful to note that the the eigenvalc@s be characterized as the roots
of the characteristic equation
det(Al — A) =0.

For two-dimensional systems, this is the same as the equation

A2 —tr(A)A + det(A) = 0

a b
tr(C d):a+d

det(a b) =ad — bec.

with

c d

Now, quadratic equations are easy to solve, so this approach is also computationally useful for 2 by 2
matrices.

There are, for 2 by 2 matrices witkal entries, either two real eigenvalues, one real eigenvalue with
multiplicity two, or two complex eigenvalues. In the last case, the two complex eigenvalues must be
conjugates of each other.

If you havea, an eigenvector associated to an eigenvalieethen found by solving the linear system

(A— v =0

(sincex is aroot of the characteristic equatiptihere are an infinite number of solutions; we pick any nonzero
one).

With an eigenvalue. and eigenvector found, we next pickany vectorw with the property that the
two vectorsv andw are linearly independent. For example, if

()
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anda is not zero, we can take

(2

(what would you pick forw is a were zero?). Now, since the sgt, w} forms a basis (this is the key
idea for alln: once you know, you need to finch — 1 other vectors to fill out a basis containiny of
two-dimensional space, we can find coefficientdd so that

Aw =cv+dw. (11

We can summarize botfil0) and (11) in one matrix equation:

Alvw) = (vw) (g g) .

Here(v w) denotes the 2 by2 matrix whose columns are the vectarglw. To complete the construction,

we letS= (v w) and
A C
= (39).

AS= SA

Then,

which is the same as what we wanted to prove, namely SAS~1. Actually, we can even say more. Itis a
fundamental fact in linear algebra that, if two matrices are similar, then their eigenvalues must be the same.
Now, the eigenvalues ok are\ andd, because the eigenvalues of any triangular matrix are its diagonal
elements. Therefore, sindeand A are similard must be also an eigenvalue Af

The proof of Schur’s theorem follows the same pattern, except for having fewer choiaearfdiv.

The Three Cases fom = 2. The following special cases are worth discussing in detail:

1. Ahas two different real eigenvalues.
2. Ahas two complex conjugate eigenvalues.
3. Ahas arepeated real eigenvalue.

In cases 1 and 2, one can always firgiagonalmatrix A. To see why this is true, let us go back to the
proof, but now, instead of taking just any linearly independent vacidet us pick a special one, namely an
eigenvector corresponding to the other eigenvalud:of

Aw = pw.
This vector is always linearly independentigfso the proof can be completed as before. Notice shist
now diagonal, becausk= . andc = 0.
To prove thav andw are linearly independent if they are eigenvectors for different eigenvalues, assume
the contrary and show that it leads to a contradiction. Thus, supposeithaBw = 0. Apply A to get
aAv + Buw = A(av + Bw) = A0) = 0.
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On the other hand, multiplyingv + Bw = 0 by A we would havexiv + BAw = 0. Subtracting gives
B — w)w = 0, and ash — u # 0 we would arrive at the conclusion thatw = 0. Butw, being an
eigenvector, is required to be nonzero, so we would have to fiavé. Plugging this back into our linear
dependence would givev = 0, which would requirec = 0 as well. This shows us that there are no nonzero
coefficientsae and g for which v + Bw = 0, which means that the eigenvecterand w are linearly
independent.

Notice that in cases 1 and 3, the matriceandSare both real. In case 1, we will interpret the solutions
with initial conditions on the lines that contairandw as “straight line solutions” and this is the subject of
Section 3.2 in the book.

In case 2, the matriceA and S are, in general, not real. Note that, in case 2Aif = Av, taking
complex conjugates gives

Ab = Av

and we note that .

)
because. is not real. So, we can always piakto be the conjugate af. It will turn out that solutions can
be re-expressed in terms of trigonometric functions — remember exaffiple- as we’ll see in the next

section and in Section 3.4 of the book.
Now let’'s consider Case 3 (the repeated real eigenvalue). We have that

(39

so we can also writdh = Al + cN, whereN is the following matrix:
0 1
(3.

(A1 +cN)? = (A1)% 4+ c®N? + 2¢cN = A2l + 2AcN

Observe that:

(becauseN? = 0) and, for the general powér recursively:

(Al +cN)K = (,\k—ll + (k- m"—ch) (A1 +cN)
=K1 + (k = DATeN + 2K TeN + (k — 1)ak—2a2N2
= 2Kl +kak-1eN

SO

kik k—1A~tk
(1 +eNE = (241 I N tF = (’\ L )

0 Akek

and therefore

et ctet
et = ( 5 ¢ o ) (12)
because @ ct+ (21c)t?/2+4 (31%c)t3/6! + - - - = cte!. (This generalizes the special case in examijle)
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A Shortcut. If we just want to find the form of the general solution6f= AY, we do not need to actually
calculate the exponential & and the inverse of the matri

Let us first take the cases of different eigenvalues (real or complex, thatis, cases 1 or 2, it doesn’t matter
which one). As we saw)\ can be taken to be the diagonal matrix consisting of these eigenvalues (which we
call herex andu instead of.1 andi»), andS = (v w) just lists the two eigenvectors as its columns. We then
know that the solution of every initial value problef = AY, Y (0) = Yp will be of the following form:

Yt)=erMYy =S sy, = (ww) <egt efit) (3) —adlv+be'tw

where we just wrot&~1Yy as a column vector of general coefficieatandb. In conclusion:

The general solution of Y = AY, when Ahas two eigenvalues A and  with respective eigenvectors
v and w, is of the form
aetyv +betw (13

for some constants a and b.

So, one approach to solving IVP’s is to first find eigenvalues and eigenvectors, write the solution in the
above general form, and then plug-in the initial condition in order to figure out what are the right constants.
Section 3.2 in the book gives us lots of practice with this procedure.

In the case of non-real eigenvalues, recall that we showed that the two eigenvalues must be conjugates
of each other, and the two eigenvectors may be picked to be conjugates of each other. Let us show now that
we can write(13) in a form which does not involve any complex numbers. In order to do so, we start by

decomposing the first vector function which appearslifi) into its real and imaginary parts:

eMv = Yi(t) +iVYa(t) (14

(let us not worry for now about what the two functioisandY> look like). Sinceu is the conjugate of
andw is the conjugate of, the second term is:

etw = Yi(t) —iYa(t). (15)
So we can write the general solution shown(ir8) also like this:
a(Y1+1Y2) +b(Y1 —iY2) = (@+bY1+i(@—b)Ya. (16

Now, it is easy to see tha andb must be conjugates of each other. (Do this as an optional homework
problem. Use the fact that these two coefficients are the compone8t3-%§, and the fact thaYy is real

and that the two columns @ are conjugates of each other.) This means ltiodih coefficienta + b and

i (@ — b) are real numbersCalling these coefficientki” and “kp”, we can summarize the complex case
like this:

The general solution of Y/ = AY, when A has a non-real eigenvalue A with respective eigenvector
v, is of the form
k1 Y1(t) + ka2 Ya(t) 17

for some real constants K1 and ko. The functions Y1 and Y2 are found by the following procedure:
calculate the product €''v and separate it into real and imaginary parts as in Equation (14) .
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What doY; andY> really look like? This is easy to answer using Euler’s formula, which gives
et = et — et (cospt + i sinBt) = et cospt + ie*! sinBt

wherea andg are the real and imaginary partsiofespectively. This is what we do in Section 3.4 of the
book.

Finally, in case 3 (repeated eigenvalues) we can write, instead:

t t
Y(t) =Yg =SS = (vw) (eg C;\e: ) (ﬁ)

=aelv+be'tctv+w).

Whenc = 0 we have fromA = SA S~ that A must have been the diagonal matrix

A0
0 A
to start with (becaus8 and A commute). Wher # 0, we can writeko = bc and redefinev as%w. Note

that then(11) becomesAw = v + Aw, that is,(A— Al )w = v. Any vectorw with this property is linearly
independent from» (why?).
So we conclude, for the case of repeated eigenvalues:

The general solution of Y/ = AY, when A has a repeated (real) eigenvalue A is either of the form
eMYy (if Aisa diagonal matrix) or, otherwise, is of the form

ki ety + ko eM(tv + w) (18

for some real constants k1 and Kz, where v is an eigenvector corresponding to A and w is any vector
which satisfies (A — Al)w = v.

Observe thatA—11)2w = (A—Al)v = 0. general, one calls any nonzero vector suchtat Al )w = 0
ageneralized eigenvectgof orderk) of the matrixA (since, wherk = 1, we have eigenvectors).

Forcing Terms. The use of matrix exponentials also helps explain much of what is done in chapter 4
(forced systems), and renders Laplace transforms unnecessary. Let us consider non-homogeneous linear
differential equations of this type:

Y
‘Z—ta) = AY(1) + u(). (19

We wrote the arguments™just this one time, to emphasize that everything is a function bét from now
on we will drop thet’s when they are clear from the context.

Let us write,just as we did when discussing scalar linear equatjiofis— AY = u. We consider
the “integrating factor’M(t) = e~Al. Multiplying both sides of the equation byl, we have, since
(e AY) = e Aty — e ALAY (right?):

de Aty
_ oAt

dt u.
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Taking antiderivatives:

t
e Aly :/ e ASu(s)ds + Yo
0

for some constant vectd. Finally, multiplying bye~At and remembering that Ale”! = |, we conclude:

t

Y(t) = ey + eA‘/ e ASu(s) ds. (20)

0

This is sometimes called the “variation of parameters” form of the general solution of the forced equa-

tion (19). Of courseYg = Y (0) (just plug-int = 0 on both sides). There are otherteson this topic.

Notice that, if the vector function(t) is a polynomialirt, then the integral in20) will be acombination
of exponentials and powers bf(integrate by parts). Similarly, i(t) is a combination of trigonometric
functions, the integral will also combine trigonometric functions and polynomials. This observation justifies
the “guesses” made for forced systems in chapter 4 (they are, of course, not guesses, but consequences of
integration by parts, but the book would lead you to believe otherwise).

Exercises.

1. In each of the following, factor the matriX into a productSA S™1, with A diagonal:
11
a A= (o 0)
5 6
o a-(39)
2 -8
e a-(279)
2 2 1
d. A= (0 1 2 )
0 0 -1

2. For each of the matrices in Exercise 1, useShé& 1 factorization to calculatd® (donotjust multiply
A by itself).

3. For each of the matrices in Exercise 1, use3neS1 factorization to calculate®.

01 2
(O 0 1)
0 0O
using the power series definition.

= (50) =0 o)

12

4. Calculatee™ for this matrix:

5. Consider these matrices:


varpar.pdf

and calculate”t, eBt, ande(A*+B)t,
Answer, true or false: igAteB! = e(A+BIt?

6. (Challenge problem) Show that, for any two matriéeand B, it is true that
eMeBt — e M B for all t

if and only if AB — BA = 0. (The expressionAB — BA" is called the “Lie bracket” of the two
matricesA and B, and it plays a central role in the advanced theory of differential equations.)
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