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1. Review

This week we have studied Fourier analysis on �nite abelian groups. The impor-
tant notion of characters was introduced, and the important theorem is that the
characters of a �nite abelian group G is an orthonormal basis of the space of all
functions on G. We also discussed the Fourier transform on a �nite abelian group,
and how that leads to a notion of Fourier series on a �nite abelian group.

2. A little extra

In the proof that the characters of a �nite abelian group span the space of functions
on that group, we have seen very clearly that the characters of a �nite abelian group
are just eigenfunctions of the translation operator. This suggests that the study of
Fourier analysis on any group should be closely related to the translation structure
of the group. For instance, the exponential functions e2πinx that arise in the study
of Fourier analysis on the unit circle are just eigenfunctions of translations.

It is also intructive at this point to point out the roles of Laplacian in the study of
Fourier analysis. Basically it plays two roles. First of all, on Rd, it is the unique
di�erential operator D that satis�es

D(f(x + a)) = (Df)(x + a) for all a ∈ Rd

D(f(Rx)) = (Df)(Rx) for all orthogonal maps R

D(f(λx)) = λ2(Df)(λx) for all λ > 0.

In other words, it is the unique translation and rotation invariant operator that is
homogeneous of degree 2 under dilations. Secondly, and this ties to the discussion
about eigenfunctions of translations above, let's observe that eigenfunctions of the
translation operator are also eigenfunctions of the Laplacian. This is because the
Laplacian involves an in�nitesimal translation on Rd. This observation is crucial
when we want to study Fourier analysis on some more general spaces, say on a
Riemannian manifold M where there is no group structure, but where the Laplacian
still makes sense; there we turn to study eigenfunctions of the Laplacian instead,
and they often give us important information about the underlying manifold. Since
harmonic functions are just functions in the kernel of the Laplace operator, and
since the Laplace operator captures so much about Fourier analysis, the study of
Fourier analysis is also sometimes called harmonic analysis.

3. Discussion of the problem set

In the problem set we have come across the dual or adjoint of the Radon transform.
I think it may be a good idea if I explain a little bit more what the adjoint operator
is in general. To �x the ideas, suppose we are in Cn, and we see that as a Hilbert
space with inner product

(z, w) =
n∑

j=1

zjwj
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and associated norm ‖z‖ =
√

(z, z). A map T : Cn → C is called a linear functional
on Cn if T is a complex linear map from Cn to C. Then it is an easy fact that for
each w ∈ Cn, the map

z 7→ (z, w)
is a linear functional on Cn. Now the claim is that these are all of them. In
other words, all linear functionals on Cn arise this way. This is because if (Cn)∗

denotes the space of all linear functionals of Cn, then it is a complex vector space
of dimension at most d (because any linear functional T on Cn is determined,
by linearity, by their value on T (ej) where ej is the unit vector in Cn with jth
component = 1 and all other components being zero, and there are just at most
d degrees of freedom). Now we have already exhibited a linear map from Cn into
(Cn)∗, namely

w 7→ (z 7→ (z, w)).
It is easy to see that this map is injective. Hence from dimension considerations,
we see that this map is actually surjective.

Now suppose A is a linear map from the Hilbert space Cn to the Hilbert space Cm,
where n may be di�erent from m. Then for each w ∈ Cm, the map

z 7→ (Az,w)

is a linear functional on Cn. Hence by our discussion above, there is a vector
w′ ∈ Cn such that

(Az,w) = (z, w′)
for all z ∈ Cn. It is easy to see that for a given w there is just one such w′, and we
de�ne this to be A∗w. This de�nes a complex linear map A∗ : Cm → Cn, and this
is usually called the conjugate transpose of A. The same construction can be done
whenever we have a bounded linear map

A : H1 → H2

from a Hilbert space into another Hilbert space, and gives a bounded linear map

A∗ : H2 → H1.

This is usually called the adjoint of A. The crucial ingredient of proving the ex-
istence of A∗ in this setting is the Riesz representation theorem, which says that
every bounded linear functional on a Hilbert space H is of the form

z 7→ (z, w)

for some w ∈ H. The proof of this is more di�cult than its �nite dimensional
analogue, and you can �nd a proof of this in any functional analysis textbook.

Back to Radon transforms, there we are basically taking the usual L2 inner product
on S(Rd), and the inner product on S(R× Sd−1) de�ned by

(F,G) =
∫

R×Sd−1
F (t, γ)G(t, γ)dσ(γ)dt.

Then the Radon transform

R : S(Rd) → S(R× Sd−1)

is a linear map, and its formal adjoint can be de�ned as above; note that since
S(Rd) and S(R×Sd−1) are not complete as inner product spaces (hence not Hilbert
spaces), the existence of the adjoint of R doesn't follow from the general consid-
erations above. Nevertheless, one can show that the formal adjoint of the Radon
transform exists, and maps

R∗ : S(R× Sd−1) → S(Rd).


