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In the following we shall give some motivation for the study of Fourier series, indi-
cating some of its applications. Some of these have been given in the lecture, and I
shall add just a little more to put things in a more general context. We shall also
have a quick review of the facts from elementary analysis that we shall frequently
need throughout this course. In particular we shall discuss issues of convergence of
sequences and series of functions.

1. Motivations for the study of Fourier series

The study of Fourier series shall occupy the �rst half of this course, and we have
seen some good reasons for this in the lectures. There we have seen how Fourier
series naturally arise from the solution of the (standing) wave equation and the
steady-state heat equation. The crucial observation is that when you solve a par-
tial di�erential equation by separation of variables, which is a particularly natural
thing to do in the case of the wave equation because of the physical standing wave
interpretation of its solution, one often runs into a series of sines and cosines, and
the following question naturally arises:

Given an `arbitrary' periodic function on the real line that has period 1, can we
always express it in a series of the form

∞∑
n=−∞

ane2πinx?

We shall discuss this question in great detail in the forthcoming chapters.

I shall just try to put things in a bigger and more algebraic context by saying that a
periodic function on the real line that has period 1 can naturally be identi�ed with a
function de�ned on the group T := R/Z under addition mod 1 (or equivalently the
multiplicative group of complex numbers of modulus 1; T for 1-dimensional `torus').
(How?) The group T acts on the space of all functions on T by translations: if f
is a function on T and θ ∈ T , we can de�ne the action of θ on f by sending f to
fθ, where

fθ(x) := f(x + θ)

for all x ∈ T . (Here we are adopting the additive notation for the group law in
T = R/Z.) Let's denote the action of θ ∈ T on the space of functions on T by τθ.
The exponential functions x 7→ e2πinx, where n is an integer, are eigenfunctions of τθ

for all θ ∈ T , and this is what really gives them their ubiquitous status. (What are
the eigenvalues?) Recall that if A and B are linear operators on a vector space that
commutes with each other, then any eigenspace of A is B-invariant. Since {τθ}θ∈T

is a family of commuting linear operators on the vector space of all functions on T
(because T is abelian!), it is perhaps not so surprising that they admit simultaneous
eigenvectors. What is surprising is that these exponentials already form a `basis' of
the space of `all' functions on T ; that is to say, `any' function on T can be expressed
in terms of linear combinations of the exponentials {e2πinx}n∈Z, and that answers
our question above positively in some sense.
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The above can be considered as an introduction to Fourier analysis from a represen-
tation theory point of view. Throughout this course we shall encounter two other
groups, namely Rn and �nite abelian groups, and the analogues of Fourier series in
those contexts shall be our central objects of study.

2. Review of elementary analysis

Since the Fourier series is naturally a series of functions, and since we shall encounter
all kinds of situations where we shall need to interchange limits with integrations
and di�erentiations, let us review several theorems that we shall assume in this
course about analysis of several real variables.

Theorem 1. Every continuous function on a compact set is uniformly continuous.

Theorem 2. A sequence of real or complex numbers is convergent if and only if it
is Cauchy. (This is the same as saying that R, respectively C, is a complete metric
space.)

De�nition 1. A series of numbers
∑∞

n=1 an is said to be convergent if its partial

sum {
∑N

n=1 an}N∈N converges. It is said to be absolutely convergent if
∑∞

n=1 |an|
converges.

Theorem 3. Any absolutely convergent series of real or complex numbers is con-
vergent (but not the other way round).

De�nition 2. A sequence of functions {fn(x)}n∈N is said to be convergent point-
wisely if it is a convergent sequence of numbers at each x. It is said to converge
uniformly on a set E if there is a function f on E such that supx∈E |fn(x)− f(x)|
converges to zero (as a sequence of numbers).

Theorem 4. The limit of a uniformly converging sequence of continuous functions
is continuous.

Theorem 5. The limit of a uniformly converging sequence of (Riemann) integrable
functions on a compact set is (Riemann) integrable, and if fn converges uniformly
to f on a compact set E, then∫

E

fn(x)dx →
∫

E

f(x)dx.

Theorem 6. If a sequence of di�erentiable functions fn converges pointwisely to
a function f on some open set and if their derivatives ∇fn converges uniformly to
some function g on the same open set, then f is di�erentiable on that open set and
∇f = g. (Have you seen the proof in Rn?)

De�nition 3. A series of functions is said to be uniformly convergent on a set E
if its partial sums are uniformly convergent in E.

The above theorems apply readily to uniformly convergent series of functions. What
breaks down if you don't have uniform convergence?

De�nition 4. A series of functions
∑∞

n=1 fn(x) is said to be absolutely convergent
if it is an absolutely converging series of numbers for each x.

One of the most common mistakes here is that some students tend to think that
absolutely convergent series of continuous functions are continuous, but this is NOT
true! (Counter-example?)

Actually absolute convergence of series of functions is rather weak, and usually
does little more than telling you that the series converges pointwisely. Its main
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importance lies in the fact that absolutely convergent series can be rearranged
freely without a�ecting the limit.

Note, however, that if a Fourier series is absolutely convergent at one point then
it is uniformly convergent on the whole unit circle. (Why?)

One of the main themes of the course is to understand when and in what sense
does the Fourier series of a function converge, and whether it converges to itself.

(For comparison, recall that the Taylor series of a C∞ function may not converge
even pointwisely, and even if it converges it may not converge to the original C∞

function!)

Other convergence that we shall encounter in this course are L2 convergence and
possibly L1 convergence: we say fn converges to f in L2 on a set E if∫

E

|fn(x)− f(x)|2dx → 0;

and in L1 on E if ∫
E

|fn(x)− f(x)|dx → 0.

Throughout the course, only Riemann integrals will be used. However, since some
of you are already familiar with Lebesgue integration, and since many things are
so much more convenient when you use Lebesgue integrals, you are allowed to use
Lebesgue integrals (and the convergence theorems associated with them) in your
problem sets, exams, etc (but please make it clear what integrals you are using
unless it is clear by context). For those of you who know Lebesgue integrals, here
are some theorems that you might want to use as is appropiate:

Theorem 7 (Bounded convergence theorem). If fn is a sequence of uniformly
bounded functions on a set E of �nite measure and if fn converges to f almost
everywhere, then f is (Lebesgue) integrable with∫

E

fn →
∫

E

f.

Theorem 8 (Monotone convergence theorem). If fn is a sequence of non-negative
functions on a set E and if fn increases monotonically to a function f at almost
every point of E, then ∫

E

fn →
∫

E

f.

Theorem 9 (Dominated convergence theorem). If fn is a sequence of functions
on a set E that converges to f almost everywhere, and if there exists a (Lebesgue)
integrable function g on E such that |fn| ≤ g for all n almost everywhere, then f
is (Lebesgue) integrable with ∫

E

fn →
∫

E

f.

Theorem 10 (Fubini's theorem). If f(x, y) is a measurable function on Rn+m and
if the iterated integral ∫

Rn

∫
Rm

|f(x, y)|dydx

is �nite, then f is integrable over Rn+m, all the following iterated integrals exist,
and the following equality holds:∫

Rn+m

f(x, y)dxdy =
∫

Rn

∫
Rm

f(x, y)dydx =
∫

Rm

∫
Rn

f(x, y)dxdy.



4 MAT 330 SPRING 2009 REVIEW SESSION 1

3. Food for thought

1. Show that the series
∞∑

n=−∞

1
n2

einx

is absolutely and uniformly convergent on [0, 2π].
2. More generally, show that if

|an| ≤
1
n2

for all integers n, then the series
∞∑

n=−∞
aneinx

is absolutely and uniformly convergent on [0, 2π].


