
Math 403 Spring 2011

Midterm 2 review

1. Compute the following line integrals:

(a)

∫
|z−i|=3

1

e2πz(z − 2i)(z − 5i)
dz

(b)

∫
|z|=6

sin(πz)

(2z − 3)(z − 2)
dz

(c)

∫
|z|=1

ez

z2011
dz

(d)

∫
|z|=1

z2011e1/zdz

(e)

∫
|z|=1

z

sin2 z
dz

(f)

∫
|z|=1

1

z(1 − cos z)
dz

(g)

∫
|z−1|=5

ez

z2(z − 3)
dz

(h)

∫
|z−π|=1

1

sin z
dz

The circles should be oriented counter-clockwise.
2. Suppose γ is the following curve:

bbb

10−1

Compute

∫
γ

e2z

z2(1 − z2)
dz.

3. Find the principal parts of the Laurent series of the following functions when
they are expanded in a small punctured disc centered at 0. Also, determine
whether 0 is a removable singularity, pole or essential singularity of the function
in each case. If it is a pole, find also the order of the pole. Find also the residue
of the functions at 0.

(a)
z + 1

z3(z + 2i)

(b)
1

z3(z + 1)ez
(Hint: Better write 1/ez as e−z instead of carrying out a divi-

sion of power series!)
1
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(c)
1

z2(z + 1) sin z
(d) z3 cos(1/z)

(e)
1

z2 − z
−

1

z

4. Expand the function
sin(2z)

(z − 3π)6
in Laurent series in a small punctured disc cen-

tered at 3π. Is 3π a removable singularity, pole or essential singularity of the
function? If it is a pole, what is its order? Find also the residue of the function
at 3π.

5. Compute the following integrals using complex analysis. You should give a
careful argument when you need to estimate certain integrals. (On the other
hand, a useful fact to know is that if you have a rational function, i.e. the quotient
of two polynomials P (z)/Q(z), then the maximum of P (z)/Q(z) over the circle of
radius R centered at the origin is comparable to, up to a multiplicative constant,
1/Rm as R → ∞, where m is the degree of Q minus the degree of P . You will
be allowed to use this (only correctly!) in the midterm.)

(a)

∫ 2π

0

dx

5 + 4 cosx
(Answer: π

3 )

(b)

∫ ∞

−∞

1

(x2 + 1)2
dx (Answer: π

2 )

(c)

∫ ∞

−∞

cos(3x)

(x2 + 1)2dx
(Answer: 2π

e3 )

(d)

∫ ∞

−∞

sinx

x2 + 4x + 5
dx (Answer: −π

e sin 2)

(e)

∫ ∞

0

1 − cosx

x2
dx (Hint: Use the indented semi-circle, as in Figure 2.16 of

your textbook. In fact, this integral is just a variant of the one in Example
6 of Section 2.6 of your text.) (Answer: π

2 )

6. Find the number of zeroes of the polynomial P (z) = z10−z4 +7iz3 +2z2 +z−1
in each of the following regions (counting multiplicities):
(a) the closed unit disc {z : |z| ≤ 1}
(b) the closed annulus {z : 1 ≤ |z| ≤ 2}
(c) the closed annulus {z : |z| ≥ 2}.

7. Find the number of solutions of the equation 4z3 = ez in the closed unit disc
{z : |z| ≤ 1}, counting multiplicities.

8. Find the number of zeroes of 5zez − 1 in the closed unit disc {z : |z| ≤ 2},
counting multiplicities.

9. Find the number of solutions of the equation z + 3 = ez on the half plane
{z : Re z ≤ 0}, counting multiplicities.

10. Suppose f(z) is analytic in a small disc centered at z0, and z0 is a zero of f(z)
of order 1. Show that

∫
γ

1

f(z)
dz = 2πi

1

f ′(z0)

if γ is a sufficiently small circle centered at z0. This is a very useful fact to know
when computing line integrals. You should try using this to solve Question 1(h)
above.
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11. Suppose g(z) is analytic in a small disc centered at z0. Show that the residue of

the function
g(z)

(z − z0)k
is equal to

1

(k − 1)!
g(k−1)(z0)

if k is a positive integer. Again, this gives you a very easy way of computing

the line integral of
g(z)

(z − z0)k
around a small circle centered at z0 (how?). You

should try using this to solve Questions 1(c)(g), Question 2 and compute the
residues in Questions 3(b)(c) again.

12. Suppose h(z) is analytic in a small disc centered at z0, and h(z0) 6= 0. Show
that ∫

γ

1

(z − z0)2h(z)
dz = −2πi

h′(z0)

h2(z0)

if γ is a sufficiently small circle centered at z0. (Hint: Use the previous question.)
13. The purpose of this question is to show the remarkable identity

(1)
π2

sin2(πz)
=

∞∑
n=−∞

1

(z + n)2
,

which holds whenever z is a complex number that is not an integer. (In partic-
ular, this is true if z is a real number but not an integer, and this is already not
so easy to prove without complex analysis1!) There are two derivations, both
using complex analysis, and we will carry out both.
(a) Fix z in C \ Z. Consider the function

f(w) =
π cot(πw)

(w + z)2
.

(i) Show that every integer is a pole of f(w), and that the only other pole
of f(w) is at w = −z.

(ii) Suppose n is an integer. Show that the residue of f(w) at w = n is
1

(z + n)2
.

(iii) Show that the residue of f(w) at −z is −
π2

sin2(πz)
.

(iv) Show that there is some constant C such that

max
|z|=N+ 1

2

|f(z)| ≤
C

N2

for all positive integer N .
(v) Show that

lim
N→∞

∫
|z|=N+ 1

2

f(z)dz → 0,

where N tends to infinity along the positive integers.
(vi) Conclude that (1) holds.

1This can be proved, on the other hand, using the Poisson summation formula in Fourier

analysis if z is real and non-integral.
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(b) Consider the function

g(z) =
π2

sin2(πz)
−

∞∑
n=−∞

1

(z + n)2
.

This function is analytic in z except possibly at the integers. We want to
show that g(z) is identically zero.

(i) Compute the principal part of the Laurent series expansion of the func-
tion

π2

sin2(πz)

in a small punctured disc centered at z = 0. Hence, conclude that 0 is
a removable singularity of g(z).

(ii) Show that g(z + m) = g(z) for any integer m.
(iii) Show that any integer is a removable singularity of g(z). (Hint: Use

(i) and (ii) above.) It follows that g(z) extends to an entire function
on C.

(iv) Show that

max
|Im z|=y

|g(z)| → 0 as y → +∞.

(v) Show that g(z) is a bounded function. (Hint: Use (ii) and (iv).)
(vi) Conclude that g(z) is constant. (Hint: Liouville’s theorem.)
(vii) Conclude that g(z) is identically zero. (Hint: Use (iv) and (vi).)


