Fourier Analysis and Oscillatory Integrals

Problems from the course by Elias Stein

7/30/07 - 8/2/07

These solutions were put together by the participants of the 2006 Princeton summer school in
analysis and geometry. Thanks to Kiril Datchev, the original version is available from his web-
page, http://math.berkeley.edu/~datchev. The participants of the same program in 2007 has
contributed some alternative solutions and additional remarks.

1. Suppose f € L*(R?). Show that f is continuous and that f — 0 as & — oco.

A

(a) Continuity: Suppose &, — &. We want f(&,) — f(€), or
/f(x)e—%riw-{ndx N /f(l,)e—Qm‘m{d$

For each z, we have
f(x)ef%rim-fn N f(x)efQﬂ*ix{

and moreover, since |e~2"%¢| = 1, it follows that,
|f(a)e ™4 < | f(x)] € L.

We can therefore apply the Dominated Convergence Theorem to yield the desired conclusion.

Alternative solution. To prove continuity of f , 1t is natural to ask a harder question and
try obtaining some quantitative bounds for the decay of f(£ +h) — f(§) as h — 0. If f is
Schwartz, then f is also Schwartz, so

A

fE+n)— f(&) =O(lh])

as h — 0 for such f. In general, such an inequality cannot be expected for a general L'
function f (why?); however, given a general L' function f, one could approximate it by a
Schwartz function ¢ in the L! norm, i.e. one could pick a Schwartz function g such that

If =gl <e



Then

F(E+ D) = F©) < IF(E+h) = g(€+ )|+ (€ +R) — a(&)| +13(&) — f(©)
<2||f — gl + O(|R))
< 2e + O(|n)),

and letting h — 0 and € — 0, we get f(f—l—h) — f({) as h — 0.

Remark. It was observed in the problem session that this second proof actually proves the
uniform continuity of f for a general L' function f. Also, one might use instead of the
Schwartz functions the L' functions with compact support; such are still dense in L' and
[F(€+ 1) = fO < If(@)(e™* = 1)[[ < RIA[|[fl|r = O(Jh]) for such f, where R is the
size of the support of f.

(b) That X
lim f(&)=0:

E—o00

Explicit calculation shows that this is true if f is the characteristic function of an n-
dimensional interval. For example, in the one-dimensional case, if f = X[q4, then

f(6) = /OO f(z)e 2™ dy = /b e 2T gy — /b cos(—2méx)dx +i/b sin(—2néx)dx

which equals

ﬁ((sin 27b¢ — sin 2ma&) + i(cos 2wb§ — cos 2wal)),

a quantity that approaches 0 as £ approaches co. (By the way, this is the most basic instance
of a van der Corput’s estimates: the proof shows ’ ff eifxdx‘ < 4/|¢| independent of a and b,

which is the van der Corput’s estimate for the case where the phase function ¢(z) = z.) It
follows that the same conclusion holds for finite linear combinations of such characteristic
functions. Now such “simple” functions are dense in L!, so we argue as follows: we want to
show that

| lim f(©)] < e

for arbitrary € > 0. If {g,} is a sequence of simple functions converging to f in the L'-norm,
then by what we have just seen,

[ fim f(©)] = | Jim f(€) — lim Gu(€)

for each n. But R A
| lim f(€) — lim g,(6)] = Jim [(€) — 5u(6)]

E—o0

which, by the linearity of the Fourier transform, is equal to

L [( = gu)"(©)]



By continuity of (f — ¢,)" (see part (a) above), we have

A [(f = ga) (O] < sup|(f = g2) (O = 1(f = g0)"lloe < (S = gu)ll1 <€

for n sufficiently large, as was to be shown.

Alternative solution. One could also approximate using compactly supported smooth func-
tions, or Schwartz functions.

2. Suppose f € L'(RY). Prove

a) [|f(x+h)— f(x)|de — 0 as |h| — 0. Let € > 0 be given. Choose f. continuous and

compactly supported such that ||f — f.||1 <&/3 (|| - ||1 denotes the L' norm). Now

f(@+h) = @)l < [[f(@+h) = fe(z+ M)+ [ fe(@+h) = fe(@) [+ fe(z+h) = f(2)]]x

The first and last terms are already bounded by €/3. We need only choose h such that

€

oo+ h) = L) < 5o

where M is the measure of the support of f.. But this is possible because a compactly
supported continuous function is uniformly continuous. Since this is possible for any
e > 0, the proof is complete.

If [ f(z+h) = f(x)|de < AJh|* as |h| — 0, then f(£) = O(|¢]™), £ — oo.

The condition on the Fourier Transform is deduced as follows:

A= [ 1) = f@lde = | [ e pa 4 )~ f@)do] =7 - 1)

This means that ,
e2ﬂ1£h -1

If(S)IIWI <A (1)

For sufficiently small |h| this is true for all ; suppose that the threshold is |h| <. We
now choose h such that e?™" £ 1 and write

o (RllED
FONIEN" < A

We will now show that when || > 1/¢, we can find h with |h| < € such that

(Rl _

|e2migh — 1| =

To do this, let h = # This makes the numerator (1/2)* and the denominator 2.

This completes the proof.

Remark. The question basically asks one to deduce some sort of decay for the Fourier
transform f given some smoothness of f. If we knew Vf € L', then we can integrate
by parts to obtain |f(€)] = | [ f(x) e 2mixE x| < c||Vf||L1/|§]| Now we do not

2ﬁ§ ax
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have such strong pointwise differentiability condition; we just have a condition involving
the difference quotients of f. But the idea is that we can still perform some discrete
integration by parts, a version that works for difference quotients, to obtain the same
kind of bounds. Note that

[0 = agte)ds = [ f@)loe— 1) - gl

if each term in the integrand is integrable. Apply this to our f and take g(z) = e~27i¢,

we get

/(f(x 4 h) _ f( 727rzx£dx _ /f 727” (x—h)¢ efzﬂixf)d:c — f(g)(e%rihg . 1)7

as we had above, and noting that we are free to choose h so that e>™¢ — 1 is bounded
away from 0, we are done.

(¢c) Ifa>1in (b), then f =0 a.e.
From (1) above we see that for £ fixed

£ (©)]|(2mich B~ + O(|B[>*))| < A

If & > 1 this is only possible if f(¢) = 0. This implies f = 0 a.c.

Alternative solution. As was suggested in the problem session, one could prove, without
Fourier analysis, that if [ |f(z+ h) — f(z)|dz < A|h|* as |h| — 0 for some « > 1, then
the distributional derivatives of f are all zero, and thus f is constant; being in L! we
must have f = 0 a.e. To see that all distributional derivatives of f are zero, note that
it ¢ € C2°, then

— gz —h) fe+h) = f(@)
flx ¢(z)dx
‘/ || ]
<C/Uw+h ),
||
=O(lh* ") —0
as h — 0. However, the left hand side converges to [ f(z gb( )dx as h — 0 along the

x; direction; this is a consequence of the dominated convergence theorem, since f € L!
and ¢ € C2°. This shows that all distributional derivatives of f are zero.

3. The result in Problem 1 cannot essentially be improved. Prove that there is an F € L'(R?)

such that for every e > 0, F(€) # O(|€]7¢) as € — oo
In RY, Let F(z) = Y07, mnde_ﬂm'%Q. Since each nde~m**n* integrates to 1 over R?

(substitute nz for x in the Gaussian integral), and since > >° > converges (compare

n= 2 n(log n)
the sum to the integral of _W which is the derivative of - ) we see by the monotone
convergence theorem that F is in L'(R?). The Fourier transform of nde=mlel*n* g g=mlel®/n®
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4.

(see the Appendix). Now by the dominated convergence theorem, the fourier transform of

F(z)is G(z) =Y, me*’T"”‘z/”Q. Then for any z € R? with |z| > 2, we have

- 1 2 2 1 2 2 1 1
G _ = T/t = T/t o I
(z) Z n(logn)26 - Z n(logn)26 = Z n(logn)? — ‘ log |x|’

n=2 n>|al n>|al

where the last inequality comes from comparing the sum to the integral

2| 7llog?
Jysel mdy. It is easy to show using L’Hospital’s rule that @ is not O(|z|~¢) for
any € > 0, so the same holds for G(z).

Alternative solution. One good way to construct an L' function is to take a sequence of L'
functions f;, each with norm 1, and let F' = ) a;f;, where > |a;| < co. Indeed then each
fj has L* norm bounded by 1, and we can make them narrow non-negative bumps around
any point that has height 1; then each a; fj contributes a height a; around a prescribed
point &;, and if §; goes to infinity fast enough, then the decay of F at infinity is worse
than any O(|¢]7*). (This last idea was due to the participants of the summer school 2007.)
To be more precise, let g be a Schwartz function whose Fourier transform is non-negative,
compactly supported in the unit ball and has value 1 at the origin, and {; be a sequence of
points to be determined, but which goes to infinity very rapidly as j — oco. Then g(§ —¢&;)
is supported near §;. Let f; be the L' function whose Fourier transform is §(§ — &;); each f;
has the same L' norm, namely the L' norm of g. Now let a; be, say, j~2. Then

F(&) =Y a;fi(&%) > arnfil&) = ap = k2

Hence if &, goes to infinity rapidly enough, say & = k*, then F/(£) is not O(|¢|~®) for any
a > 0.

Remark. Even in the original solution, the Gaussian function is not essential. If ¢ is any L!
function whose Fourier transform is non-negative and g(¢§) > 1 for all [£] < 1, then letting
f; € L' be such that f;(€) = §(&/4), we have all || f;||,1 being equal, and F = 3" a; f; would
be in L' as long as each a; > 0 and > a; < oo. Now fj is becoming fatter and fatter, and
thus F(m) > D rem a; f;(m) = Y a;g(m/j) > > e ;- Thus if we could find a non-negative
sequence a; for which Z;’il a; < oo and Zj’;m a; decays slower than any negative power of
m, say Z;’im a; > 1/logm, then we are done. But this could easily be done, by taking a
bng - m for large j, then the conditions are
satisfied, and F' as such would be in L' and yet having Fourier transform that decays slower

than any negative power of [£]. A trickier choice of a; would be a; = m

telescoping series; indeed if we set a; =

(a) Suppose f € L(RY), and k > d/2. Show that f can be corrected on a set of measure
zero to become continuous.

Let f € L2(R?) with k > d/2. Then, by definition, f(£)(1 + |¢[>)*/2 € L2(R?). By the
Schwarz-Cauchy inequality it follows that

F©) = (FOM+ M) (1+1g*) 2 € L'(RY)



Using Problem 1 above, it follows that f lies in the same equivalence class of L>(R?) as
some continuous function, so f (and hence also f), can be modified on a set of measure
zero to become continuous.

Remark. If k > d/p, then every f € L¥(R?) can be modified on a set of measure zero
to become continuous: this is the General Sobolev Theorem, proved on pp. 270-271 of
Partial Differential Fquations by L.C. Evans. More on Sobolev spaces can be found in
Chapter 6.5 of Stein’s Harmonic Analysis.

Give an example of f € L¥(R?) which cannot be corrected to be continuous.
Let f(x) =1log®(1/|z]))x(x), where x € C§°(R?), supp(x) C B(0,2); x = 1 near 0, and
a € (0,1/2). Since Ili‘mof(x) = +o00, f can’t be modified on a set of measure zero to

be continuous.

Claim. f € L*(R?)

Proof. We use polar coordinates on R?

|f(z)Pda < C/Oo log®*(1/7)rdr
R2 0

We will show
lim log®*(1/r)r =0 (2)

r—0t

from which it will follow that the the latter integral is finite. But this limit is the same

as
log® x

log® ' z(1
lim — lim 2% z(l/z)

T—00 €T T—00 1

=0
where we have used L’Hospital’s rule. Now (2) holds.
Let j € {1,2}. Then, near 0, 9;f(x) = 9;log®(1/|z]) = —alog® ' (1/|z])525 So

2[z[?

19,/(2)] < Clog®(1/]a])

|z]

for x # 0 sufficiently small. Using polar coordinates, it will follow that 9, f € L*(R?) if
we manage to show that

1/2 d 1/2 d
/ log2(°"1)(1/r)¥ = / logQ(afl)(l/r)—T < 400 (3)
0 r 0 r

Observe that % log* ' (1/r) = —(2a — 1) log? @ V(1/r)/r for 0 < r < 1/2. Also
2a — 1 < 0 by construction, hence

lim log%‘_l(l/r)‘r:i/2 = log**'2

e—0+ r=

So (3) immediately follows. O



Thus it follows that f € L?(IR?).

Alternative solution. x +— loglog|z| is in L7 near the origin in R? but cannot be
modified to be continuous at the origin.

Show that
2 cosr
oy} = lim Ji(r) = \/; 3
and o
sinr
=7
Proof:

We take the Bessel functions Ji(r) to be defined as

_ (g)k ! irs 2 —%
Jk(r)—m/le (1 — s>k 2ds,

where I'(z) = [;¢*"'e~" is the usual T' function and satisfies I'(1) = 0! = 1.

For the second identity, we calculate

-
to»—t

1
/ e"5(1—s*)z272 / cos(rs) + isin(rs))ds
-1

1
s(rs ds—l—/ isin(rs)ds
1 _

1

/ cos(rs)ds + 0

sin(r)

(N}

- )
r

which implies

NJ\»—'

1
2ds

l\.’)\»—‘

’LTS
e —

3 f

=)

as wanted.

For the first identity, assume k& > —3 In the above definition of the Bessel functions
Jix(r), we have that as k approaches —1 from the right, I'(k + 1) approaches +oo and
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the (1 — 32)’“_% term makes the integral blow up near s = 1. So, we try to get these
terms to balance using integration by parts.

We use the formula I'(k + 2) = (k4 1)['(k + 3) (which is valid for & > —3), and as
before we write ¢"* = cos(rs)+isin(rs) and break the integral into two. The first is the
integral of the even function cos(rs)(1 —s2)¥72, so it is twice the integral on [0, 1] of the
same thing. The second is the integral on [—1, 1] of the odd function sin(rs)(1 — s?)k=3,

and is thus 0. We are left with

(g) 2(k + 1)/0 cos(rs)(1 — sz)k_%ds.

Telr) = T(k+ 2)y/m 2

Since

—~
N3
~—
>
[\
I

. 1
lim —=%—— —r 2

et T+ 5ym Vo

it suffices to show that

On any interval [0, 1 — €], cos(rs)(1 — s2)"~2 is bounded uniformly in k, so we see that

1 1—€ N 1—e -
lim 2(k + 5)/ cos(rs)(1 — s2)2ds = 2(0) - / cos(rs)(1 — s?)"2"2ds = 0.
0 0

k——3

For [1 — €, 1] we integrate by parts to get

2(k + %)/1 cos(rs)(1 — s?)F 2ds =

—€

() (e b ) o
[ ) N e

_ M(ge _ 2yt /1; (COS(TS))/(l _ 2)ds,

1—¢ —S

which in the limit as &£ — —% becomes

I

e L)




Letting € — 0, the integral term goes to 0 while the boundary term converges to cos(r)

as wanted. Alternatively, just evaluate the integral to see that the whole expression is
cos(r).

() |
(r"Ju(r)) =—=r"Jps(r),

n a non-negative integer.

We do this for both definitions of the Bessel functions. Assuming

_ (%)n ! irs 2 nf%
Jn(r)—m/_le (1 —s%)""2ds,

we calculate

T (j)g)i/’ e ((n+;)<1—82)"‘5<—2s)) ds
(%)"“ 1

where in the last step we integrate by parts, and all boundary terms are 0. From this
we obtain

1 n+1

<r-"Jn<r>>’— 5 f / irs(1 = 2)+h s

n+1
— _Tfn 'Lrs _ n+%d8
o + — / #)
= r_an+1( )

The second definition of the Bessel functions is

R O
Jn(r) - GZTSIH‘g@_mGdQ.
2 Jo



In this case we calculate

—-n ! d [r ™" o irsin@ —inf
(r="J,(r)) —%{ /0 e e d@]

27
— 27 -n 27
r~"n NP T o o
- — elTsm@e 1n9d9 + (Z sin e)elTsmee znGdQ.
2 r Jo 2 /o
Meanwhile,
e LI .
= " (r) = ——/ glrsintd =ilnt1)0 gg
27 Jo
o 21 o '
— 6710627‘ sin GefznGde
2 J
T o .
—_ _ (COS 6 — isin 9)617" sin 96—1n9d9
2m Jo
I - , pn 2 . A
= =5 (cos §)emsmle=imfay 4 (i sin §)e™ 500 g,

Attempting to equate this with what we calculated for (r~"J,(r))’, we may cancel
the second integral from each expression, as well as a factor of —% We now use
integration by parts on the first term of the second expression:

2 1 o
/ (cos O™ e™0d) = — / (ir cos 6e’>?) e’ dp
r
0 0
2T . o
1 s ; m - .
— ._ezrsm@e—m@ + = ezrsm0€—m0d0
1r 0 o

r

n 2T
=0 + _/ ezrsmée—méde,
0

where now we use that n € N because this forces e™™? = ¢7™?2™ = 1 making the

boundary term evaluate to ;—Tl (1—1) = 0. Staring at the equations for a moment,
we're done.

Remark. For non-negative integers n, there had been two apparently different defi-
nitions of J,(r), and we have seen that both definitions satisfy the same recurrence
relation < (r~"J,(r)) = —r~"J,11(r). Hence they are both determined by Jy(r). Now
it is easy to check that both definitions of Jy(r) agree; just make a change of variable.
Hence the two definitions of J,(r) are actually the same.
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6. Supply the details of the proof of the interpolation theorem.

Observe that if we have instead ||To1it(f)llg < Allfllpe and ||Ti+i(H)llg < Bl|fllp,, the
theorem can be applied to Ty /(A B*) to obtain a sharp bound for Tj.

Proof. Let simple functions f and ¢ with ||f||, = ||g||¢4 = 1 be given. (Here ’ denotes the
conjugate exponent.) Define

fs = 1£1*“Psgn(f) and g, = |g/*** sgn(g)

where a(s) = (1 —s)/po + s/p1, B(s) = (1 — s)/q, + s/¢;, and sgn(f) is the function such
that f = |f]sgn(f). A direct calculation shows that fy = f and that go = g. Let

¥(s) = [ L(f)gudn
1)|w(0+it)] < 1. In fact

W0 +it)] < Q/M%quvmﬁ@“4ﬂm“””%nu»|wﬁ“hm (definition)

TP/ 1/00) s )l g1/ (FHoder's #)
L1275 18] g, = 1 (by hypothesis)

(VARVA

2)|W(1 + ¢t)| < 1. This calculation is the same as the previous one, except that the roles of
the subscripts 0 and 1 are interchanged.

3)U(s) is analytic in the strip. In fact, suppose f = " anxn and g = > byxn, where a,
and b,, are complex coefficients and y,, are characteristic functions of measurable sets in M.
Then we have

U(s) =Y > lam|*@P sgn(an)|bs| "7 sgn(b,) / Ty (Xom) XnClps

Here we have used the linearity of 7T, to pull the s dependence of the functions f; and g
out of the integrand. Since the integral is now analytic in s by hypothesis, we have a sum
of analytic functions which is again analytic.

From these three facts it follows that [U(s)] < 1 in the strip. In particular |[¥(0)] < 1.
We now fix 6 and regard ¥,(¢) as a bounded linear functional on g € L7 (M), where now
|W,(0)] < ||glly. This means that the norm of Tp(f) as a linear functional on L9 (M) is
bounded by 1, from which it follows that ||Tp(f)||, < 1. For f with p-norm different from 1,
we apply this last inequality to f/||f||, and obtain ||Ty(f)||; < ||f]|, as desired.

[
7. Let Ff = f and suppose
F: LP(R) — LYR") (4)
is bounded, say R
1f1lg < Allfll (5)

where the constant A is independent of f.
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(a) Show that necessarily 1/p+1/q = 1.
Fix f € L? such that || f||, # 0. Fix § > 0. Define g(z) = f(dz). We get

oty = ([ o) v ([5swpe) Y g,

This gives us that g € LP and so we know that g € LY. We get
9(8) = / e 2T f(0)dr = 671 / O £ (5)d(Sx) = 67 f(£/6)
We get [|glly = 0~"/9|| f|l,- Using (5) we get

=) flly = llglly < Allgll, = A0~2|1 £, (6)

Using (5) and (6), we get

g/ at1/p=1) < q (7)
Letting ¢ in (7) tend towards 0 and oo, we get that 1/p+ 1/q = 1.
Remark. Such a scaling argument (or dilation argument) is very useful in determining
the only possible relations between the exponents of an inequality that holds for ‘all’
functions. For instance, except with a twist, this argument shows that in the restriction
theorem || f | Lan-1y) < C|| f]|Lr®ny for the sphere, the only possible exponents are those

. . . (n—l) /
(p,q) which satisfy g = Tf-

(b) Show that necessarily 1 < p < 2.
Consider f(z) = e ™" where § = a + i3, a > 0,3 € R. Then

1/p 1/p 4
I£1l, = ( / \6"‘”'2|pdx) = ( / e‘mp'xi%zx) = (ap) ¥ (8)

Also
7= (/ \|5|—d/ze—w|x2/5‘qu)“q
= ( / ‘|5|—d/26—7r|w\2a/|6|2 )
= 1372 (aqlo] %)~ ( / G_de)l/q
9)
Thus

(S|4~ (20) =/ 20) < A~/ Py op)
A1/ )=/ (20) =/ (20) 1/ (2r) < |51401/2-1/a) (10)

by fixing a > 0 and letting 5 — oo, we get |§| — oo. To get (10) to hold, we must have
q > 2, which is just 1 < p < 2 (by part a).

12



8. Carry out the proof (via polar coordinates on the sphere S%1) that:
(a)

sin(27|&|)
I

Observe that since do is radial, do is also radial. Thus gc;(é’) = c/Z;(O, 0, €]). Write for
x € S? that x = (cos 6 sin ¢, sin 0 sin ¢, cos ¢). Then

do (&) =2 d=3.

35(0,0.1¢]) = / e 23l g (1)

/ / e 2mIE10% 0 sin dfdg

727r1|§|cos¢>
=27 ————
2milg] |,
sin(27|&|)
=2—=
€]

(b) More generally,
(do)(€) = 27l =3 Juzs (27 ¢))

using the formula for the Bessel function Jy, for k > —1/2.
Again, do is radial. Therefore

io() = [ e mlin(a)

:/ / 6727""5'COS¢(SiH¢)d72d0d,2d¢
0 Jsd-2
d—2 ! —omil¢|s 2\ 4=2
=[S | e (1—-s5")2ds
= 2rlé| T Tz (2m[€]).

where the second to last equality makes use of the change of variable s = cos ¢.

9. Give an example of a ™ closed curve in R? to that if do is the arc-length measure on it,
then da(f) # o(1) as || — oc.

Indeed any C*° closed curve that contains a straight line segment cannot have do = o(1) as
|€| — oo, if do is the arc-length measure on it. This is because we can consider a measure
dp on the curve given by

dp(z) = f(2)do(x),
where f is a compactly supported smooth function on R? whose support only intersects the
curve in the straight line segment. Then



Assume on the contrary that 35(5) = 0(1) as €] — oo. Then since f(€) = o(1) as |¢] — oo
as well, we have @(5) = o(1) as |{] — oo. But this is impossible, since dpu, being a finite
measure supported on a line segment, has Fourier transform being constant along straight
lines that are perpendicular to that segment. This proves our claim.

10. Consider J,,(r) with n integral. Show

(a)

|J(r)| < Ar=Y/2 uniformly in n and r, if r > cn, for any fixed ¢ > 1.

We will use the following van der Corput estimate (see p334 of Harmonic Analysis
by E. M. Stein): If ¢ is real valued and C* in (a,b), and satisfies |¢*)| > 1 (and ¢’
monotonic for k = 1), then we have

b
‘/ ei)\qb(x)dx’ < Ck)\_l/k

C}. independent of a, b and ¢. Because n is an integer, we use the formula

T or

1 [ .
Jn (T’) / elrsin 9€7ln9d6.
0

Observe that if in the hypotheses of the estimate we have |¢(*)| > ¢ rather than |¢p(*)| >
1, this only changes the leading constant by a factor of e7'/*. Now r is in the role of ),
and f(6) = sin—20 is in the role of ¢. Using r > cn, we see that f'(6) > cosf—1/c > e,
if 0 € [0,0.] U[2m — 6.,27], where 0. is a constant depending on ¢ only. Note also
f(0) = cos® —n/r < —1/2 if |§ — 7| < w/3. Hence on these intervals, the total
contribution of the integrals are 16(e.r)™!, a decay better than desired. (Caution: We
actually have to divide the integral from 27 /3 to 47/3 into two halves, namely from
27/3 to 7 and then from 7 to 47/3, because the phase function is not monotonic on
the big interval. That does not harm our estimate though.) Now f”(#) = sinf, so
over the rest of [0, 27| that is not covered above, we have |f”(0)| > .. Apply van der
Corput’s estimate on each of the intervals, we get the bound Cg(ecr)_l/ 2 so overall we
get a bound A.r~/2 for J,(r), with A. depending only on ¢ but not on n nor r.

|J.(r)| < An~=N, for each N, if n > cr, for any fixed ¢ > 1.

For this we use the nonstationary phase principle. Let f()) = 6 — T sinf), and observe

that 1
f/(9)21—2C08921—121__'
n n c

This allows us to apply repeated integrations by parts in the following manner:

2m 27 . / 2 2 /
/ Ginf6) g _ / (ins@I(O0) by ingio) L _ / Sinf(6) (;) 0.
0 0 inf'(0) inf'(0)p=o 0 inf'(0)

The boundary terms cancel because f(2w) — f(0) = 2w, while f/(0) is 2w-periodic.
The new integrand is now manifestly O(n~'). To obtain better powers of n, we repeat
this integration by parts. The boundary terms are of the form ™/ g(#), where g(f)
is a function of f’(f) and its derivatives, and hence continue to give no contribution.
Meanwhile each successive integration by parts gives an additional factor of n=! in the
integral.
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11.

12.

(¢) |Jn(r)] < Ar=Y3 uniformly for all n and r.

Here we again use r for A, and f(#) = sinf — %6 for ¢. This time we observe that
|f7(0)] + | f"(8)] > ¢ for some ¢ > 0 independent of n and r. We can now decompose
(0,27) into subintervals, on each of which we have a lower bound on either |f”| or on
|f""|. We break up our integral into several pieces using a partition of unity as before,
and this time each piece is bounded by either Cr~'/2 or by Cr~/3. So overall we get
Ar—1/3_ A independent of n and r.

b
Let Iy(\) = / @)y, In obtaining the estimate Iy(\) = O(A\~"), show that the condition

that ®' is monotonic cannot be relaxed.

Let A = 1. The real part of the integrand is then cos(®(z)). Suppose that ® > 1 oscillates
so that it is large when cos(®(z)) < 0 and is small when cos(®(x)) > 0. This implies that
®(x) escapes quickly when cos(®(x)) < 0 and changes slowly when cos(®(x)) > 0. Hence
the measure of the set where cos(®(x)) > 0 is much larger than the measure of the set where
cos(®(z)) < 0. Thus the real part of the integral is unbounded as b — oc.

Write out a proof of “Morse’s Lemma”: If ®(0) = |[V®(0)| = 0 and V2®(0) has nonvanishing
determinant, then there is a smooth change of variables * — vy, so that near the origin

Cz) =yi+ys+ o Fyp— (gt +Yd)

Lemma (Morse’s Lemma). Given that 0 is a nondegenerate critical point of a smooth real
function f on a manifold M, that is |V f(0)| = 0 and det(V2f(0)) # 0, and that f(0) =0
there is a local coordinate system (y;) such that f(y) =i +y5+-+yo — (Yo +--- +¥3)
around the origin.

In the proof we use the inverse function theorem and the following simple lemma.

Lemma (Hadamard’s Lemma). Let f : U — R be C* for some k > 1 defined on a convex
neighborhood U of 0 € R™, and f(0) = 0. The there exist functions g; € C*1 i=1,...,m

defined on U such that f(x1,...,%m) = > ooy 2igi(Z1, ..., Tm) and g;(0) = g—L(O).

Proof. Note that

df (tzy, ..., txy,)
flay, .. xy) = /0 f( 1dt dt = /Z . (txy, ... toy)zdt

Thus g;(x1,...,Tm) = 01 g—i(txl, ..., tzy, )dt satisfies the required conditions. O
Proof of Morse’s Lemma. Let (x1,...,x,) be a coordinate neighborhood around 0. By
the above lemma, we can write f(z1,...,%m) = Doy 2igi(21,...,Zy). Since we have

IVfl =0, ¢:;(0) = af >-(0) = 0. Thus we can apply Hadamard’s lemma to each g;, getting
gi(z1,. .. ) = Z] 1 xihii(z1, ..., 2y) and

floy,. o om) = Z Tiwjhij (1, ..o Tm)

i,j=1
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13.

Without loss of generality, assume h;; = hj;. Otherwise we could define Bij = %(hij + hy;),
resulting in ﬁij = ﬁji and f = lexﬁm Note that by Hadamard’s lemma, we have
hij(0) = 37 o -(0), so (h4;(0)) is nonsingular.

2 Ox;0x
We now proceéd by induction. Suppose there is a neighborhood U; C U parametrized by
coordinates (u;) around 0 and a diffeomorphism ¢, z; = ¢(uy, ..., u,,) such that
(fod)(u)=dul tus+---+u |+ Z wiug Hij(u, ..o Up) (11)
0,j>T

and (H;;) symmetric for all u € U;. Note that since (h;;(0)) is nonsingular and ¢ is a
diffeomorphism, we have

0 # det (¢'(0)" (hy(0))¢'(0))
where the right hand side is equal to the matrix form of (11) with H;; evaluated at 0. Thus
at least one entry of H;;(0), ¢,7 > r is nonzero and by a linear change of the last n —r
coordinates we can make H,.(0) # 0. By continuity, H,.(u) # 0 in some neighborhood
Uy C Uy of 0. Let g(uy,...,un) = v/|H(u)|, a function definted on Us. Consider the
following coordinate change:

Vi = Uy 1F£T
. iHir ul 77777 um) ) —
U'r'_g(u17"'7 ) <u7“+27,>7" Hyr (Ul sum) > t=r

.....

The Jacobian of this transformation at u = 0 is simply g(0) # 0 so by the inverse function
theorem there is a neighborhood Us C U, of 0 on which the above coordinate change, which
we denote v = 9 (u), is a diffeomorphism. Note that now we have

Hir (u) Hjp (u)

v, = £Hp (W) u,u, £ 2 Zuru H,;(u) + Z Uity (0]
Tr u

i>r 1,7>1

so that the u, terms in (11) can be replaced by v,v, minus a sum over indices larger than r,
leading to

(f o ¢o¢71)(v) = :iZ’U% + ... :i:’Us + Z ’l]inﬁij(’Ul, c. 7Um)

9,0>T
with f[ij smooth and symmetric. This completes the induction step of the proof.
O

Remark. If ® is a homogeneous quadratic polynomial and V*®(0) non-degenerate, then
one can diagonalize ® rather easily. The point is even for a general @, as long as ®(0) =
|IV®(0)| =0, we can write it as in the Hadamard’s lemma such that it looks like a ‘variable
coefficient quadratic polynomial’. The proof for the case of a homogeneous quadratic poly-
nomial then carry through, as long as we are working near 0, where the coefficients can be
thought of as ‘roughly constant’.

Show that the averages theorem (in R®, A : L*/3 — L*) cannot be improved.
Let € > 0 be given. We will find f € L*3(R) such that A(f) = [, f(z—y)do(y) & L***(R).
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14.

We first observe that xp(2)|z|™® € L'(R?) < 3 > a. So
Bz~ € LY3(R?) iff o <9/4 (12)

We will take f(z) = xp(o2)|r|™®, where a < 9/4 is to be determined later. Then f € L*/3
by (12). Now we observe that Af(x) is radial. In fact, if p : R* — R? is a rotation, then

_ XB(0,2)(PT — V) _ XB(0.2) (pT — p2)
Afler) = /s |z — yl doly) = /s |z — pzl do(z)
- / Xp02)(® = 2) Z)da(z) = Af(z)
SZ

|z — 2]

Let r € (0,3) be given. Let z = (0,0,7). Then, using spherical coordinates, we get, for

a# 2,

sin pdpdl " sin pdyp
Af(z) = =27
2 |:1c—y|a 1—2rcosgp+r2)a/2 o (1 —=2rcosq+ r2)a/?

_2r A+ gy B 7T((1 +7)27 — (1 —7r)*)
28 Jope ut? (1—a/2)r

We expect Af to be very large when |z| ~ 1. Now the function z +— (ﬁ(l + |z[)?272)+e s
integrable for |z| near 1. So, we want to find « such that [, , 1](|%(1 — |z])F ) Hede =
+00. In spherical coordinates, this integral is

1 1
1
C/ (=(1 =)0, > D [ (1 — ) @EF)20,

12T 1/2
Now
1 1 1 1 1/2
/ (1 _ r)(Qfa)(4+5)7,2dT. > _/ (1 o r)(Qfa)(élJrs)dr _ = / 8(27a)(4+5)d8
1/2 4 )12 4 Jo
If (2 - a)(4 +¢) = —1, then this integral is +oo and Af ¢ L*™(R?). However, then
a =2+ so f e LY3(R?).

2
Alternative solution. Let f(z) = xpo.(z) in RE Then || || p@rn/e = cei1. Note Af(x) ~
£~1 when ||m| — 1| < ¢/2. Hence ||Af|lzp > e {||z] — 1| < 5/2}|P = c£® % and for

eIy <C’€d+1 to hold as ¢ — 0 we need d—1+ > dC_lH,

L% to any LP where p > d+ 1. (The idea here is that characteristic functions are relatively
easy to average, and that simplifies the calculation.)

ie. p<d+1. So A cannot map

Show that the spherical maximal theorem fails for p < dil

We will construct counterexamples depending on p and d, and in each case the spherical
maximal function of our counterexample will be everywhere infinite. If d = 1, the spherical
maximal theorem fails for all p < co. Indeed, consider f(z) = x(x)|z|~° € LP(R), where
e > 0 is sufficiently small and y is any compactly supported function which is positive near
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the origin. The spheres in this case are pairs of points, and as one of the points approaches
the origin we see that the absolute value of the average increases without bound.

d d

-5, 80 fix p € [1, 75

We now assume d > 2, and treat first the case p < ), and put

flx) = x(@)|z] 7

log™» |w|’ ,

where y is the characteristic function of the ball centered at 0 with radius 1/2. We first
verify that this function is in L” by computing as follows:

1/2 d log 1/2
J1r= [xlettog 2l = [0 <o [T s < o,
0 rlog r —o0

where we used polar coordinates, followed by the change of variables logr = s.

We now estimate from below the spherical maximal function at a point zy. Fix 2o € R?\{0},
e € (0,min{1/2, |zo|}), and let D. denote the intersection of the sphere centered at o with
radius |zo| — 5 with the ball centered at 0 with radius . We observe that the area of D. is
bounded below by ce?~!, where c is a constant proportional to the area of the unit ball in
R%!. On the other hand § < |z < e for # € D,, so we may write

/fda > fdo > c€d_1€_%
s D.

2 €
og™4
g 7 5

But d—1— ]% < 0forpel, d;fl), so letting e — 0 shows that the spherical maximal function
is infinite at .

If p= d%'ll, a more delicate analysis is necessary. We put

f(@) = x(@)|=[~"" [log ™ ||

and observe that, by the same reasoning as before, f € LP. To see why the spherical
maximal function is infinite, consider the following heuristic argument: Let Ds. denote the
intersection of the sphere centered at zy with radius |z¢| — § with the ball centered at 0 with
radius €. For a fixed € > 0, ¢ << |zo|, as § — 07 the integral over D;. resembles more and
more closely the integral over a disk of codimension 1 centered at zero and with radius e.

We then have
: d—2 © odr
fdo > fdo~c | f(r)r“=dr=c =00
S D, 0 o rlogr

4 Y

The technical difficulty lies in justifying the ‘~’. We give a brute force treatment of the
integral here without quite following the above line of reasoning, but if anyone knows a

simpler proof, I'd love to hear it. For now, consider the sphere centered at x, with radius

|zo|, and parametrize the portion of this sphere near the origin using « aof £(0, zg, x).

Observe that the surface measure on the sphere is given in terms of a by [ f(a)do =
clao|*t [ f(a)(sin @) 2da, which we write more simply as [ f(a)do = ¢ [ f(a)(sina)??da

I
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15.

(the constants here will be allowed to depend on z). Observe that, by the law of sines, we
have |z| = |zo| 226 = csin §. Putting this together we see that

: LN
/SdeZc/O f<csm2>(smoz) do
e L yd—2
= c/ (jil o) do
0 (sin %) log (c sin %)

€ a\d—2
= c/ (cos 2) do.
0

3 o 3 [
sin § log (c sin 2)

Here we have restricted to a neighborhood of the origin, and simplified our integral using

double angle formulas. We now use the substitution u = csin :

d—3

csin% 1 — 2\ 4=3
_ c/ Q-w)=
0

ulogu

This last integral is divergent, which proves that the spherical maximal function is infinite.

Suppose that S is a smooth hypersurface in R? given as a graph S = {z : x4 = F(a'),
7’ € R} with F smooth. Verify the formula giving the induced Lebesgue measure: that
for any continuous f of compact support

e—0 2¢ S, N Rd—

where S. = {z : d(z,5) < €}
We first show that

(Vo F(a'), —1)
0+ Vo )P
This means that S, is a tubular neighborhood of S obtained by taking points (', F'(z’)) of S
_ _(VpF@E),-1)
~ GV FE)P) T
We first observe that S. contains this set because each point (z/, F'(z')) + t®(2’) in it is no
more than e away from the point (z/, F(2')). To see the reverse containment, let a point in
Se be given, and suppose we have chosen our coordinates so that this point is the origin. We
will show that it is of the form (2/, F'(2")) & 0®(2'), where zg = (2, F(2')) is any point at
which the minimal distance is attained and 0 is such that |z¢| = d(0,.S) = 0. This is the same
as showing that the vector pointing to x( is perpendicular to S, i.e. that it is perpendicular
to any curve in S passing through zo. To see this, let xz(¢) be a parametrization of a curve
passing through zy at ¢ = 0, and observe that because ¢ = 0 is a local minimum of |z(t)|?
we have 0 = %|t:0|zzc(7f)|2 = 22/(0) - 2(0). And this dot product being zero expresses exactly
the fact that the vector pointing to xq is perpendicular to x(t).

Now let g(a',¢) = (&, F(a')) + (@3 (a'), ®5(a')) and put ¢(a’) = (1 + |VorF(')P)!/2. The
Jacobian of ¢ is given by

S, = {(«/, F(z')) + t L2 €RTLE € (—¢,€))

and adding multiples of ®(z) the unit normal vector to S at (z/, F'(z')).

[ 1d4tJ(®y) | VF +tVD,
/ (9>‘< VESE) | —1/3() )
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16.

where J(®) is the Jacobian of ®. Now we rewrite our integral using the change of coordinates
given by g

Jwar= [ pwde= [ R@) e e )

We now divide this by 2¢ and let ¢ — 0. But the fact that f and J(g) are continuous and f
is compactly supported allows us to pass the limit through the integral in z’, so that we get

hm—/ F((@', F(2')) + t®(2'))| det(J (g))|dt = f(a’, F(a"))] det(J(9))I],_q

e—0 2¢

But an argument by induction on the dimension d shows us that

1+ |VF(x')|?

_ 2 [2)1/2
S = O IVEE)P)

| det(J(9))l],_, =

which gives
11m—/ f(z)dx = f@', F(a")(1 + |VF(2'))?)?da’
]Rd 1

as desired.

Verify that the intrinsic definition of Gauss curvature (in terms of the Gauss map of the
normals to the unit sphere) agrees with the coordinate dependent definition given for graphs.

We will do this by computing the Gauss curvature according to the intrinsic definition, and
then verifying that this agrees with the definition for graphs.

Let n(x) : S — R? map each point in the given surface S to a unit normal vector at n;
locally this is well defined up to sign. Recall that the directional derivative of the normal
vector at a point n(z) in the direction of the tangent vector v is given by Vn(zg) - v where
the matrix Vn(zg) has entry (7, j) given by 9;n;(zo). Observe that this matrix maps tangent
vectors to tangent vectors. In fact, if y(t) is a curve in S passing through z at time zero,
then we have

d

2n(7(0)) - Vn(y(0)) - v/(0) = —

2| G =0

The first equality follows from the chain rule, and the second from the fact that all the
normal vectors have unit length. Intrinsically, the Gauss curvature is defined to be the
determinant of this matrix as a map from the tangent space to itself. In odd dimensions this
is only uniquely defined up to sign, because our normal vector was only uniquely defined up
to sign, and because det(—A) = (—1)" det A.

We now compute this explicitly in coordinates. Suppose first we wish to compute the Gauss
curvature at the origin and that the surface is given by S = {z4 = f(z1,...,24-1)} here with
f(0) =0 and V£(0) = 0. We will reduce the general case to this one later. Let p : R — R?
be given by p(x) = x4 — f(x1,...,24_1). Then S = p~1(0), and a unit normal vector may
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17.

be defined by n(z) = £ g; But |Vp(x)| = /1 + |V f(21,...,24-1)]?, so [Vp(0)] =1 and
n(0) = (0,...,0,1).

Now

n(z ni(x) = ‘@p(ac)
(Vn(z))i; = Ojni(z) @Wp(x)‘

We are interested in this matrix as a map from the tangent space at the origin to the tangent
space at the origin, so we only allow ¢ and j to range from 1 to d — 1. This gives

9;0:f£(0)  0:if(0)0; [Vp(@)ll,—o 4 5
SZO 0 A

The first term simplifies because |Vp(0)| = 1, and the second vanishes because V f(0) = 0.

(Vn(0))i; = -

The determinant of this matrix is thus exactly the determinant of the Hessian of f, up to a
sign in odd dimensions, which is exactly coordinate dependent definition of Gauss curvature.
To reduce to the general case to the case just solved, observe that we can find a translation 7
and a transformation M € SL(R%™1) such that 7 sends x to 0 and M reorients the surface
so that it is the graph of a function f with f(0) = 0 and V f(0) = 0. We must check that the
determinant of the Hessian of f at xy equals the determinant of the Hessian of for to M~}
at 0.

0,0;(for o M) (0) = 0; (Z(akf) o to M (x)- Mk,;(fr)>

k

T=x0

—Z@gakf 1’0 é@le]l

This means, if V2 denotes the Hessian, that VZ(f o 77! o M~1)(0) = M~ 'V f(ze) M~ .
Taking the determinant of both sides and using the fact det M~ = 1 we find that the two
determinants match.

Consider (s fo s7L f(u)du, where f € C*(R) and of compact support. Show that the
residue of tbe meromorphic continuation of 1(s) at s = —k is %
We want to calculate the residue of I(s),s € C for each —k, k = 0,1,2,..., where I(s) is
given by (13) N
I(s) :/ wt f (u)du. (13)
0

Here f € C° and Rs > 0. Our first goal is to ensure that we have a meromorphic continua-
tion of the function over the proper domain and then to calculate the residue. If we consider
sI(s),Rs > 0, we get (14)

sl(s) = 8/000 u¥ T f (u)du = ut f (u)|3° — /000 w® fY (u)du = — /000 w® f O (u)du (14)
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18.

So, we now have a definition of I(s),0 > Rs > —1 given by (15)
_1 [
I(s) = —/ u® fY (u)du. (15)
0

S

Continuing by a similar argument, we get the following definition for I(s),—k > Rs >
—(k+1),k=0,1,2,... given by (16)

1) = [ﬁ (siﬁ)

Jj=0

/OO us—i—kf(k—i-l)(u)du (16)

0

We notice two simple facts about the definition 16. First, the function /(s) is the meromor-
phic extension of our original I(s). Second, I(s) has simple poles at —k,k =0,1,2,.... So,

in order to calculate the residue of I(s) at s = —k we must simply compute (17)
lim (s + k)I(s). (17)

And here is the computation:

lim (s + k)I(s)

k
1 o
= lim (s + k - / wstE £ () du
lim (s + k) H(ﬂ) [“ )
k-1 1 o
= lim (—1 _ wsHF R () du
1im ( >LO | [ e

/ "/ w)du

0

This is the desired result.

Remark. Compare with the analytic continuation of the I' function and the distribution
s—1

x5 /T (s).

Suppose t +— ~(t) is a smooth curve in R® with non-vanishing torsion (i.e. the vectors
v (t),~"(t), and v (t) are linearly independent for each t). Let do be the measure carried
on this curve, given by

/Rg fdo = /01 Fr(@®) ' (t)]dt

Show that (do)* (&) = O(|¢|71/3).

We prove this instead for dpu = ¢do, where ¢ € C§° such that ¢ restricted to the curve is
supported in the interior of the curve. We use a partition of unity (which will be specified
later) to write

/e_zmz'gdu(x) _ Z /1 6—27ri7(t)'£1/1n(t)|’y/(t)‘dt
" 0
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19.

Each of these integrals can be written

/emw owow:/V“ SO (0)]dt

where A = [£|. This is an oscillatory integral. We know for each ¢, either ®'(¢y), ®"(to), or
®"(ty) is nonzero from the hypothesis of nonvanishing torsion. This means it is uniformly
nonzero in a neighborhood of ¢y, so provided our partition of unity is chosen in such a way
that on the supports of the v, we have one of ®, ®” or ®” bounded away from zero, we
can apply a van der Corput estimate. This tells us that [ e?®®q, (£)]y/()|dt = O(A~L/F),
where k is the order of the derivative which we know is nonvanishing on the support of .
In the worst case we get decay of O(A~Y/3) = O(|¢]~1/3).

Remark. This is a prototype of the situation where the submanifold does not satisfy the
non-vanishing Gaussian curvature condition, but satisfies a weaker ‘finite type’ condition.
See Chapter 8.3.2 of Stein’s Harmonic Analysis.

Let S be a smooth hypersurface in R whose curvature vanishes at one point. Then the
averages theorem, restriction theorem, etc. may fail as stated. For example, take S to be
the curve xy = x% in the plane, with k an integer > 2. Then the curvature of S vanishes at
the origin only.

(a) Show that in this case the inequality ||A(f)||« < Al f|lz» cannot hold for p = 3/2,
q=3.
We claim that if A maps LP(R?) to L (R?), then 5~ < g As aresult, if A maps

L3 to L3, then 5 < le k<2 Let f(x) = xo, 25)<$1)X(05k)< z3). Then

1fllor = cs> .

Also for € small, if 2; € (0,¢) and x5 € (0, "),

NE‘\»—‘

Af(x) > f(ml—I—t Ty — tF) /1 + k2t2k=2dt > cx%

0

HAfHLP’ >c (/ / QE d$2d$1) = cgl+k;r’l_

SO

For

Z = Le

(c.f. Chapter 9, 5.21(b) of Stein’s Harmonic Analysis.)
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Remarks. The characteristic functions are typically easy to average along a submanifold,
so we have chosen to test the given inequality with such. Note also that implicit in the
above solution is the role played by the one-parameter family of non-isotropic dilations
(11, 79) — (dz1,0%25). These dilations are relevant because they preserve the curve
To — I]f

Show that ||R(f)||r2(s) < Al f|lLe(r2) fails for p = 6/5 in this case.

Let € € (0,1] and let x. be the characteristic function of the set

{(51752) :—e < 51 <eg, _5k < 52 < 5k}

and consider f. = F~!y.. We have on the one hand

1/2 € 1/2
1Rl z2es) = (/ + (ka1 ™) dlﬁ) > (/ dml) = ce'/2,

Meanwhile f. is given by

€ ek : : k
fE<I> — /627rix-§xa(§)d§ — / 627ri:p1§1d§1/ 627r1'3:2§2d€2 — CSIH(QTHL‘lg) SIII(QTI':L'QE )
—e _ck

X1 X2

We can then compute

: : 5/6
T B |Sm(27m18)|6/5d:c |sm(27rx2€k)|6/5dx
( 15 [ Isin(2may |6/5 > ( ks [ ]8in(2mzy |6/5dx2> "

’$1|6/5 |ZE2|6/5

1+k
Hf1HL6/5

Letting € — 0 we see that so long as k > 3, no inequality of the form ||R(f)|r2s) <
Al| | 6/5r2) can be true.

~ 7r§2 7£
Alternative solution. Let f(x) = e ™*1e=™"23 Then f(£) =e 2 e - e - Hence

A 00 gre2? 27r€ 2 k
|RfllL2(s) = e (/ e~ e o dﬁl) — e~ et
0

For ||[Rf|r2s) < C| f|lLr(r2) to hold, we need

-

to hold when € — 0. Thus we need — k“ —i— . S

If p =6/5 is allowed, then g < g,’z—ﬁ, i.,e. k < 2. Note again the role played by the
relevant non-isotropic dilations here. c.f. Chapter 9, 5.15(b) and 5.17(a) of Stein’s

Harmonic Analysis.
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20. Let u(x,t) be the standard solution of the Schrédinger equation i0;u = A, u with initial
condition u(z,0) = f(x) given by

u(x, t) _ /Rd e47r21‘t|§\2627rix-§f-(§)d§

Prove

(a)

sup, |u(z, t)] < et~ f]1.
Let g(x) = (—4mit)~%2el**/4t (with the square root chosen in the right half-plane).
Then §(&) = e*™ ¢ (see the appendix). Now suppose f € C5°(RY). We write

u(z,t) = /Rd eQ”ix'gfgdﬁ = fxg(x) = /Rd flx — y)(—47Tit)’d/ze|y|2/4“dy,

Hence |u(z,t)| < ct=%2||f]|; for all z. A density argument allows us to extend the result
toall f € L.

When d =1, sup [ |o,u(e, )t < el [
z 0

We first compute d,u(x,t) = [ ¥ (2mi€)e? % f(£)dE. We then divide the integral
into two pieces and make the change of variable n = £? in each:

/oo 64”2it£2 (27Ti£)€2mz£f(f)d§ _ /00 €4W2itn(ﬂ.i)e27riw\/ﬁf(\/ﬁ)d77
0

0

/0 647r2it52 (27Ti§)62mx§f(f)d£ _ /0 647r2it17(7m')6—27ri$\/ﬁf(—\/ﬁ)dn

— 00

Combining these two and using another change of variable to rescale, we find

Ouulet) = 5 [ (VIR - o)) d

&« / ™oz, n)dn.

o0

Here ¢ is defined in such a way that ¢(z,7) = 0 for n < 0. Applying now Plancherel’s
theorem we see that

/ Dyule,t)Pdt = / (i, )|

< 1 [ VWATRRE £ 1F Vi
= = [TUROF i o
~ « [ i@ < I3,

From this the desired result [;° [0,u(x, t)]*dt < ¢/ f||3. follows.
1/2
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Appendix

Let 2 € R and f(z) = e ™" for § # 0,R(8) > 0. We compute f(€) as follows: Observe that f
satisfies the following differential equation

(% +2mz) f(x) =0

Taking the Fourier transform of both sides we see that

. d s
(2mi€ + 25d—£)f(§) =0
We multiply by the integrating factor emlél?/o (our distributions may no longer be tempered at this
point) to get
FEf) =0
But a distribution of zero derivative is constant, so that

~

f(&) = Ce™e

Now C' = f(0) = [ f(z)dx. If § is real, this can be computed by a change of variables to be §1/2.
If  is complex, after multiplying and dividing by the square root of § which lies in the right half
plane, we write the integral as a contour integral over the line ' given by {z = §(z) : = € R}:

/ e ™ dy = 5_1/2/e_m2dz
oo r

Now a deformation of contour shows that this last integral is 1. In the d—dimensional case this
gives us
(e*”‘s‘xP)A — 542/

with the square root of § chosen in the right half plane.
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