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Abstract

We provide the details of the proof of the average theorem and the restric-
tion theorem. Emphasis has been placed on the relation between the decay of
the Fourier transform of the measure carried on a submanifold and the gain
in regularity. The relation between the restriction theorem and a Strichartz
estimate is also explained.

Theorem 1 (Average theorem). Let S be a smooth submanifold of R", do be the in-
duced Lebesgue measure on it, and du(x) = n(x)do(z) where n € C°(R™). Suppose
for some o > 0

du(§) = O(|€]7)
as |£| — oco. Define the average operator by

Af(z) = /S £ — y)du(y).

Then

(a) A maps L?>(R™) to L2 (R").
(b) A maps L3a+1 (R™) to L2+2(R™).
Proof. The proof of (a) is easy; just observe that if |c/lp(§)| < C|€|™%, then together

with the trivial bound |du(§)| < C that holds by the finiteness of the measure du,
we have

()] < C(1 + [¢?)~o/2.
Thus

/ (1+ [¢?)2|AF(€)|2de = / (1+ €121 F (€)1 |dp(€)|2de
R R
<c? / RHGICS



which implies that
[Afllz < Cllfllze-

To prove (b), we proceed in a number of steps.
Localizing the average operator

First we localize the average operator as follows. By means of a partition of
unity, we may assume without loss of generality that the support of du lies in a
coordinate chart U of S (the average operator is a finite sum of such in any case).
By a change of coordinate, restricting to a smaller coordinate patch if necessary, we
may assume that S is the graph of a function F(z') there, i.e. S is defined by

S={(2,z,) eR" xR: 2, = F(z')}.

Then
dp(z) = m(z')/1+|VF(2')[2d’

there, where 7 is a smooth function with compact support on R®~!. For simplicity,
we write this as

dp(x) = ¢(a')da’
with ¢ € C2°(R™1). In this local coordinate system,

Af@) = [ 16 == PO )

The idea is that we can embed it in an analytic family of operators and apply the
complex interpolation theorem, which we state as follows:

Theorem 2 (Interpolation of Operators). Suppose a > 0, and that for each complex
number s in the strip —a < R(s) < 1, Ty is a linear operator defined on simple func-
tions on R™ such that for any fized simple functions f and g, ®(s) = [ Tsf(x)g(z)dx
is analytic and bounded (as a function of s) in the open strip —a < R(s) < 1 and
is continuous on the closure of the strip. Suppose further that there are exponents
Do, P1, 90, q1 € [1,00] such that

[T—atitfllLoo < [IfllLeo
| Titie flloa < || fllLe

uniformly for t € R. Then
1Tofllze < || fllze

where
1 1-6 0 1 1-6 0 o

— = —+ —, - = + —, and 0 == .

p Po Pq qo T a+1
In particular, Ty extends uniquely to a bounded operator LP — LY with norm at most
1.




Embedding in an analytic family of operators

To embed A in an analytic family of operators, first observe that Af can be
written as

Af(z) = - f@ = y)do(yn — F(¥')o(y)dy.

It is profitable to introduce a cut-off function ) in the y,, variable; indeed

Af@) = [ S =y)oolyn = F()(yn — F(y') ey )dy,
where ¢y € C°(R) with ¢» = 1 near 0 and ¢ = 0 outside (—1,1). The point is
that there is a way to embed the distribution Jp on R into an analytic family of
distributions. Consider the distribution

0 S®) = ila) = [ st e,

where t; = max{t,0} and s is a complex parameter. The integral converges if
Re s > 0. It can be analytically continued to Re s > —1 by integration by parts;
indeed for Re s > 0,

o) = [ gttt = [T s S = - [ i

the last of which converges if Re s > —1. Hence we can take the last integral as the
definition of j5 when Re s > —1. In particular, when s = 0, the distribution is

jolg) = - /0 h F(ll)tog'os)dt - / (bt = g(0),

hence jg is just §g. More generally, we can define the distribution for Re s > —k by
the (convergent) integral

js(g) _ (_1)k/RF(Sl_'_k)ts+k_lg(k)(t)dt'

This gives us an analytic family of distributions, in the sense that js(g) is a holomor-
phic function of s for each Schwartz function g on R. As a result, we are tempted
to define an analytic family of operators by

Tsf(x) = - f@ —y)is(yn — F(y)0(yn — F(Y))o(y)dy,

say for Schwartz functions f, with j, acting on the y,, variable. This can be written
as

Tsf = f * KS')
where K is the distribution defined by
Ks(y) = js(yn — F(y )0 (yn — F(y) (/). (1)



For Re s > 0, K4(y) is just the function given by

57 = PO 00 = P00,

Ks(y) =

(Here we already see why it was good to incorporate 1 in our formula for A; it is
only by introducing this harmless factor that Ky has compact support in the y,
variable, or at least has some decay as y, — 00.) Note also that the distribution K
is just du.

Boundedness of K

Now when Re s = 1, K(y) is a nice bounded function of y; indeed then

[Ks(y)| <

I'(s)’
and hence Ts maps L' to L> with norm at most CT'(s)~!. Note that

1 sinms
- (1 —
F(S) T ( S)’

so when Re s =1,
1

- < Celm s

I'(s) — ’
which grows exponentially with Im s as Im s — co. As a result, the maps T does
not quite satisfy the conditions of the interpolation that we stated above; this can

be taken care of easily though, so let’s not worry about it for now.
Fourier transform of K

Next we would like to obtain an /If theory for T for appropiate values of s. Thus
we need to compute and estimate K;(§). First, suppose Re s > 0, so that K;(y) is
a nice integrable function of y. Then

Ky(€)

(1 ) / (n — F() 0 (yn — F(y)) by )e 2™ dy

1 / </ (n = F(y)T ¥y — F (y’))e_z”iy"ﬁ”dyn> oy )e 2™ dy
Rn—1 R

)
F(ls) (3 &n) - ¢(y/)e*27”'(y"£’+F(y’)gn)dy,
1
m I(s &n)du(f) o
where

I(s,6,) = /R 5Ly ()2 g

this follows from the change of variable y,, — F(y') — y,, and that du(y) = ¢(y')dy’.
Now when Re s < 0, K, is a distribution with compact support, so K4(§) is the



function defined by (e=27%<¢ K,(y)) which depends analytically on s. Furthermore,
['(s)~11(s,&,) also has an analytic continuation to the right half plane by integration
by parts, just as we analytically continued the distribution js. Since both sides of
(2) can be analytically continued to the whole complex plane, the identity continues
to hold even when Re s < 0, and we shall see that I/(\S(ﬁ ) is a bounded function of £
on the vertical line Re s = —a, thereby giving us the desired L? theory of T} that
allows us to apply complex interpolation.

Estimating (s, ¢&,)

Now we estimate I(s,&,): first for Re s > 0 we have the trivial bound

1
11(s,&0)| < /Rtf:”—lm(t)ydt < C/o tRes =gt < CRes. (3)

Actually via an integration by parts, we can obtain a better decay for large || if
Re s > 1: in that case

I(s,6,) = /O e A (e—%itﬁn) dt

—2mi&, dt
1 Cd o —2mite
= — (5 (t))e 2 dt
s | e
the boundary terms vanishing since Re s > 1 and % vanish at infinity. This shows
that then R .
I < [ | 5@ v <
e Sy a &

Indeed the larger Re s is, the more integration by parts one can perform and the
better decay one obtains as |[£| — oo: if Re s > k for some positive integer k, then
arguments analogous to above give

C
[€nl*
It turns out that one can get a better estimate than the trivial one even if we just

have Re s € (0,1]: the idea is that one can in effect perform an integration by parts
Re s times even though Re s is not an integer. More precisely, one splits the integral

[1(s,&n)| < (4)

€ o0
I(s,&n) z/ +/ 57 hp(t)e 2" ndt = A + B,
0 €
€ < 1. The first term is estimated by
€
|A| < / tRes=Hah(t)|dt < Cresetes.
0

The second term can be integrated by parts:

> 1 d .
B = ts—l ¢ et —2mitén, dt
/5 YO e @ (e )

. 1 s—1 —2migky, Ooi s—1 —2mitén )
— e (e [T S e




SO
Res—1 CReSERe s—1

s—1
Tl m/‘ ( w))‘dtg &)

6Res 1
11(s,&)| < |A] + |B| < CRes <5Res + ) :
[nl
Note that we are free to choose € here. The first term is big when ¢ is small, while
the second term is big when ¢ is large. One optimizes the expression by choosing &
such that the two terms are of the same order, say by setting

Ce
1Bl <

Hence

Res _ 2,_:Resfl
E - b
|€n]
i.e. e = |& |7t Then
11(5,6n)| < CResl€n] 7%, (5)

a better decay than the trivial one when [,| goes to infinity. (5) was proven just
now for Re s € (0,1], but if Re s € (k,k + 1], then one can integrate by parts k
times just as we did when we improved from estimate (3) to (4) and that allows one
to see that (5) actually holds on the whole right half plane Re s > 0. Together with
the trivial estimate, we see that

11(s,&n)| < Cres(1 4 [n])71¢° (6)
when Re s > 0.

Next we estimate I(s,&,) when Re s < 0. Here we need a different integration
by parts to reduce the estimate to the case Re s € (0,1]. By analytic continuation,
if Re s € (—k, —k + 1] for some positive integer k, then

1 _ (_1)k > s+k— dk —27itén
mf(safn) = F(s—i—k)/o otk 1%(1/1@)6 2T ) dt

where then Re (s + k) € (0, 1]. It follows from the proof of (6) that

CRe (s4k)

< LG (116 ) < O™ (L416]) . (7

I(s,&n)

' 1
I(s)
Back to L? theory

Putting things back together, note that by the assumed decay 3;\1 = 0(|¢]™)
and by the finiteness of the measure du, we have

|du(€)| < O+ ¢~

From (7), we see that if we were to find a vertical line on the complex s plane on
which K,(€) = T'(s) (s, &,)dp(€) is bounded as a function of &, then the best that



we can do is to go to the straight line Re s = —q; we could not hope to go beyond
the left hand side of that. Indeed on this line

|K5(6)] < CRrose™ (1 + [€a]) 7R (1 + €)™ < Cpet™®

This proves that 7T, is bounded from L? to L? if Re s = —«, with norm at most
Ce™#. Again, this does not quite satisfy the hypothesis of the complex interpola-
tion theorem, but we shall take care of that now.

Conclusion with complex interpolation

Indeed it suffices to modify slightly the definition of Ts to apply the complex
interpolation theorem as stated. Let

~ 2
Tsf(x) = e Tsf(x).
Then T is still the average operator A, but now one takes advantage of that

s2

e _ e(Res)2—(Ims)2

Im s

which decays more rapidly then e~ as Im s — oo. Hence one has now

H7:1a+z‘tf||L2 < Collfll 2
|T14it fllLee < C|fll 12

~ 2a+2
It follows from the complex interpolation theorem that Ty = A maps L22+1 bound-
edly to L2712, O

Theorem 3 (Restriction theorem). Let S, du and o be as in the average theorem.
Then the Fourier transform maps LP(R™) to L*(S,du),

2(a+1)
a+2

Proof. Let f be a Schwartz function.
R*R duality lemma

First,

/S 7O aute) - / FOF©du(e)
/ / / Je 2TV f(w)e2rirEdp (&) dyd
_/n( nf() u(y —x)dy)f()dx_

This is just another way of saying that if Rf = ﬂs then

(Rf,Rf)r2(s,an) = (R* RS, ) 2@



with .
R'Rf = f*du(—").

(Recall that given an L?(dp) function g defined on S, R*g(x) is the function defined
on R" such that

(RS, 9) 25,4y = (fs R*g) 2 (mm)
say for all Schwartz function f, where again Rf = J?'S. But
(BE.9)s2(s.am = [ FOTEn(E)
S
— [ [ s eg@asdute)
S JR»

- [ 1@ /S g(€)ermimEdp(€)da
= ( f(@), [ g(©)e*™ du(€) :
(e, )

L2(R™)
S0

Rig(a) = /S 9(E) 2= Edp(€)

for g € L?(S,dp). (One can thus think of R* as an extension operator.) It follows
that

RRf@) = [ FOemdu(e) = [ 1)ty )y
as claimed.)

To prove that R maps LP to L?, it suffices to show that R*R maps LP(R") to
LY (R™), i.e.
1f * (=) o @ny < CllF I zony,
because
IR Z2(5.0) < IR RS o ey 11 2o ey -

Embedding into an analytic family of operators

Now

—

R'Rf(z) = . f(x —y)du(—y)dy.

Again we would like to embed this into an analytic family of operators. Let K
be an analytic family of distributions with Ky = dp as in (1) in the proof of the
average theorem. Then it is natural to define, motivated by the proof of the average
theorem, that

—

Lf@)=e” | fl@=ypK(-ydy.

This integral converges for all complex values of s, since we observed that I/{\S(y) is
a function that grows at most polynomially in y for each fixed complex value of s,
and f is Schwartz.



L? theory

Observe that
Tsf(§) = e f(E)Ks(=E)
and recall that

UK (-] < C
if Re s = 1. Hence when Re s = 1, T, maps L? to L? with norm at most C.
L' theory

Next recall that

" K(6)] < Ca
if Re s = —«. Hence when Re s = —a, T, maps L' to L™ with norm at most Cl,.
Conclusion with complex interpolation

It follows from the complex interpolation theorem now that R*R = Ty maps

LP(R™) boundedly to L¥ (R"), p = 2(;:21). Hence the Fourier transform extends to

a map from LP(R™) to L?(S,du). O

Corollary 1. Let S, du, o be as in the restriction theorem. Then the extension
operator

Rig(e) = [ ol au(e)
maps L?(S,dp) boundedly to LI(R™), with
2(a+1)

«

Proof. Note that the ¢ in this corollary is the conjugate exponent to p in the re-
striction theorem. We have seen R maps LP(R") to L?(S,du), p = % As a
result,

|(fs R*g) r2my| = [(RS, 9) 12(5.dp0)]
< |[Rfllr2(s,amllgll L2 (s.dp)
< Ol fllr@mllgll L2(s,ap)

so by duality
R gl Larny < Cllgllr2(s,dp)»

q being the conjugate exponent to p, i.e. ¢ = 2(a+l) 0

«

We shall now give some applications of the above theorems. Here we shall be
dealing with non-compact submanifolds of an Euclidean space, and the measure in-
volved will not be the one that is induced from the Lebesgue measure of the under-
lying Euclidean space. The proofs illustrate how one handles such non-compactness
by introducing cut-off functions.



Corollary 2 (Strichartz estimate for the linear Schrodinger equation). Let f(x) be
a Schwartz function on R™. If

u(e,t) = [ Fe)em et ag
Rn
so that u solves the linear Schrodinger equation

(2m88t Az> u(z,t) =0

with initial value

u(z,0) = f(x),
then
lull La(dwar) < Cllfll L2 (dw)
with
2(n+2)
g=——"
n

Proof. The crucial submanifold here is the hypersurface

S={() eR": 7=}

The induced Lebesgue measure on the hypersurface is do = /1 + 4[¢|2d¢, but the
essential property for us would be its behaviour near the origin. We would like
to apply the average theorem and the restriction theorem, but our surface-carried
measure do does not have compact support. Therefore we need to introduce a cut-off
function and let the support go to infinity. The non-isotropic dilations,

(,1) = (Az, \%t)
that preserve the hypersurface, will also play a role.

Let n € C2°(R™) with n(0) = 1, and let du = n(§)do = n(&)\/1 + 4|£[?dE. Then
since S has nowhere vanishing Gaussian curvature, d,u(x t) decays like

du(z,t) = O(|(x,0)| %),
so we can apply Corollary 1 with o = n/2.

The corollary to the restriction theorem says that if

Tf(xz,t) = f(f) 2ri(e- S+ () /1 + 4[€[2dE

then -
1T fllLa(dzary < Cllfllz2(ae) = CllfllL2(da)s

10



where ¢ = w Now pointwisely

2
u(x’t):AEI_EOO - (§)€2wi(w-£+t|£|2)n <§> mdg

= lim [ A"FAE)eFmOC TN () /1 dl¢dg

A——+o0 Jrn

= lim T Az, A2t
Jm T (fx) (A, A7)

where fy(z) = f(A"1z). Hence for ¢ = 2nt2)

n

lell pa(azary < liminf [|T(f3)(Az, N || La(dwdr) (Fatou’s lemma)
= lim n A5 T | paaoar) (Scale invariance)
< 1/\imJirnf oN T Al 22 (dz) (Restriction theorem)
= lim n CA™ 0 N5 || £l 2y (Scale invariance)
= C|lf Il £2(da)
since
n+2 n L
g 2
for this value of q. Hence we are done. O

Corollary 3 (Averaging along a paraboloid). Let f(z) be a Schwartz function on

R™, If
Af@) = [ 1 =il = 1 Py
then
HAfHLp’(Rn) < CHfHLP(R")
with
- n+1
-

Proof. Again let du = n(y')\/1 + 4|y/|?dy’ be a measure carried on the paraboloid
{yn = [V/|*}, where n € C®(R"!). Then du(¢) = O(|§|_nT_1) because S has
nowhere vanishing Gaussian curvature. Hence the average theorem says that if

T5@) = [ £ P T AP

then
1Tl ey < ClFllzogn
with
n—+1
b= .
n

11



Now pointwisely

Af@) = [ == Py

2
dy’

/

Y

/
— 1 I - /12 yf 1 47
m [y P () 1

A——+00 Rn—1

according to the dominated convergence theorem. However,
2

/

Y

/

! / /12 Y
Y T — YV 144
IR Iyl)n<A) el
Nt [ = = X Pt T Al Py

=N (AT A2,

dy’

where
fialx) = fA2, N2xy,)

is the dilation of f by the relevant non-isotropic dilation. Hence

HAf||Lp/(Rn < lim inf AT () (A, /\_23:n)|]Lp/(Rn) (Fatou’s lemma)

= I;m inf AN HT(fA)HLp(Rn (Scale invariance)
—+400

< liminf CNINT (Average theorem)
A—+400

n+1 n+1
= liminf A"\ A~ £l e (e (Scale invariance)
A——+400

= C[|fll r(wn)

since 1 1
n—1+ n _n =0
p p

when p = ”TH This completes the proof. O

Corollary 4 (Strichartz estimate for linearized KdV equation). Let f(z) be a
Schwartz function on R. If

(e, t) = f(f) 2mi(neHE) ge

so that u solves the linearized KdV equation

with initial value
u(z,0) = f(x),
then
1wl s (dzar) < CIf L2 (de)-

12



Proof. The proof is the same as that of Corollary 2, except now that the relevant
submanifold is the curve S = {(£,£%): € € R} in R? and the curvature of S vanishes
at the origin. The best possible decay for du is now

dp(€) = O(|€]75),

so if we apply Corollary 1 as in the proof of Corollary 2 with @ = 1/3 we obtain

lull 28 @wary < ClfllL2(da)-
]

Corollary 5 (Averaging along a curve of finite type). Let f(z) be a Schwartz func-
tion on R?. If

Af(z) = /Rf(:cl —t 20 — tF)dt

then
IAS N Lo 2y < CllSllLere)

with
2k 42
P=

Proof. Again the proof is the same as that of Corollary 3, except now that the
relevant submanifold is the curve S = {(¢,#¥): t € R} in R?. The curvature of S
vanishes at the origin. However, since it is a curve of finite type k, we still have a
certain decay for du; indeed

— _1
du(§) = O([¢|7x),
so if we apply Theorem 1 with o = 1/k as in the proof of Corollary 3 we obtain

JAF N o gy < CllF ooy

with
2k 42
P=
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